antimatter.client.models#
Antimatter Public API
Interact with the Antimatter Cloud API
The version of the OpenAPI document: 1.1.3 Contact: support@antimatter.io Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
Submodules#
antimatter.client.models.access_log_entryantimatter.client.models.access_log_entry_create_infoantimatter.client.models.access_log_entry_open_infoantimatter.client.models.access_log_entry_read_infoantimatter.client.models.access_log_resultsantimatter.client.models.active_root_encryption_key_idantimatter.client.models.add_capsule_log_entry_requestantimatter.client.models.add_read_contextantimatter.client.models.add_write_contextantimatter.client.models.antimatter_delegated_aws_key_infoantimatter.client.models.api_key_domain_identity_provider_detailsantimatter.client.models.available_delegated_root_encryption_key_providerantimatter.client.models.available_root_encryption_key_providersantimatter.client.models.available_root_encryption_key_providers_providers_innerantimatter.client.models.available_service_account_root_encryption_key_providerantimatter.client.models.aws_service_account_key_infoantimatter.client.models.capabilityantimatter.client.models.capability_definitionantimatter.client.models.capability_definition_listantimatter.client.models.capability_listantimatter.client.models.capability_ruleantimatter.client.models.capability_rule_match_expressions_innerantimatter.client.models.capsule_create_responseantimatter.client.models.capsule_infoantimatter.client.models.capsule_listantimatter.client.models.capsule_open_requestantimatter.client.models.capsule_open_responseantimatter.client.models.capsule_open_response_read_context_configurationantimatter.client.models.capsule_seal_requestantimatter.client.models.conflict_errorantimatter.client.models.create_peer_domainantimatter.client.models.data_tagging_hook_inputantimatter.client.models.data_tagging_hook_input_records_innerantimatter.client.models.data_tagging_hook_input_records_inner_elements_innerantimatter.client.models.data_tagging_hook_responseantimatter.client.models.data_tagging_hook_response_records_innerantimatter.client.models.delete_tagsantimatter.client.models.domainantimatter.client.models.domain_add_read_context_rule200_responseantimatter.client.models.domain_authenticateantimatter.client.models.domain_authenticate_responseantimatter.client.models.domain_contact_issue_verify_requestantimatter.client.models.domain_control_log_entryantimatter.client.models.domain_control_log_resultsantimatter.client.models.domain_fact_listantimatter.client.models.domain_hooks_listantimatter.client.models.domain_hooks_list_hooks_innerantimatter.client.models.domain_identity_api_key_principal_paramsantimatter.client.models.domain_identity_email_principal_paramsantimatter.client.models.domain_identity_hosted_domain_principal_paramsantimatter.client.models.domain_identity_principal_detailsantimatter.client.models.domain_identity_provider_detailsantimatter.client.models.domain_identity_provider_infoantimatter.client.models.domain_identity_provider_listantimatter.client.models.domain_identity_provider_principal_listantimatter.client.models.domain_identity_provider_principal_paramsantimatter.client.models.domain_identity_provider_principal_typeantimatter.client.models.domain_identity_provider_typeantimatter.client.models.domain_insert_identity_provider_principal200_responseantimatter.client.models.domain_insert_write_context_regex_rule200_responseantimatter.client.models.domain_peer_configantimatter.client.models.domain_peer_listantimatter.client.models.domain_peer_list_peers_innerantimatter.client.models.domain_policyantimatter.client.models.domain_policy_ruleantimatter.client.models.domain_private_infoantimatter.client.models.domain_public_infoantimatter.client.models.domain_resource_summaryantimatter.client.models.domain_resource_summary_schema_innerantimatter.client.models.domain_settingsantimatter.client.models.domain_settings_disaster_recoveryantimatter.client.models.domain_settings_patchantimatter.client.models.domain_statusantimatter.client.models.domain_status_notifications_innerantimatter.client.models.domain_tag_info_resultsantimatter.client.models.errorantimatter.client.models.factantimatter.client.models.fact_listantimatter.client.models.fact_policy_rules_innerantimatter.client.models.fact_policy_rules_inner_arguments_innerantimatter.client.models.fact_type_definitionantimatter.client.models.gcp_service_account_key_infoantimatter.client.models.google_o_auth_domain_identity_provider_detailsantimatter.client.models.hook_invocationantimatter.client.models.invalid_request_errorantimatter.client.models.json_patch_request_addantimatter.client.models.json_patch_request_add_valueantimatter.client.models.json_patch_request_copyantimatter.client.models.json_patch_request_moveantimatter.client.models.json_patch_request_removeantimatter.client.models.json_patch_request_replaceantimatter.client.models.json_patch_request_replace_valueantimatter.client.models.json_patch_request_tstantimatter.client.models.json_patch_request_tst_valueantimatter.client.models.key_infosantimatter.client.models.key_infos_key_informationantimatter.client.models.new_access_log_entryantimatter.client.models.new_access_log_entry_read_infoantimatter.client.models.new_capability_definitionantimatter.client.models.new_domainantimatter.client.models.new_domain_responseantimatter.client.models.new_factantimatter.client.models.new_fact_type_definitionantimatter.client.models.new_fact_type_definition_arguments_innerantimatter.client.models.new_read_context_config_ruleantimatter.client.models.patch_request_innerantimatter.client.models.principal_infoantimatter.client.models.principal_summaryantimatter.client.models.read_context_config_ruleantimatter.client.models.read_context_detailsantimatter.client.models.read_context_listantimatter.client.models.read_context_parameterantimatter.client.models.read_context_required_hookantimatter.client.models.read_context_rule_facts_innerantimatter.client.models.read_context_rule_facts_inner_arguments_innerantimatter.client.models.read_context_rule_match_expressions_innerantimatter.client.models.read_context_short_detailsantimatter.client.models.resource_exhausted_errorantimatter.client.models.resource_not_found_errorantimatter.client.models.root_encryption_key_id_responseantimatter.client.models.root_encryption_key_itemantimatter.client.models.root_encryption_key_test_responseantimatter.client.models.rotate_key_encryption_key_responseantimatter.client.models.starred_domain_listantimatter.client.models.tagantimatter.client.models.tag_metaantimatter.client.models.tag_setantimatter.client.models.tag_set_span_tags_innerantimatter.client.models.tag_summaryantimatter.client.models.tag_summary_elided_tags_innerantimatter.client.models.tag_summary_unique_tags_innerantimatter.client.models.tag_type_fieldantimatter.client.models.unauthorized_errorantimatter.client.models.upsert_span_tags_requestantimatter.client.models.verify_contact_responseantimatter.client.models.write_context_config_infoantimatter.client.models.write_context_config_info_required_hooks_innerantimatter.client.models.write_context_detailsantimatter.client.models.write_context_listantimatter.client.models.write_context_regex_ruleantimatter.client.models.write_context_regex_tag
Package Contents#
Classes#
Detailed information about an API key identity provider |
|
The AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations. |
|
An individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in) |
|
information available if the operation is of type "create". |
|
information available if the operation is of type "open". |
|
information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read. |
|
The results for a query of the capsule access log |
|
The stored key ID to use as the active root encryption key. |
|
A request to add a capsule log entry |
|
A request to add read contexts |
|
Information for adding/updating a write context |
|
The details required to use an AWS KMS root encryption key that has been delegated to Antimatter's AWS account. This will use Antimatter's service account during set up of the AWS client. |
|
AvailableDelegatedRootEncryptionKeyProvider |
|
AvailableRootEncryptionKeyProviders |
|
AvailableRootEncryptionKeyProvidersProvidersInner |
|
AvailableServiceAccountRootEncryptionKeyProvider |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
A list of capability definitions |
|
A list of capabilities |
|
A rule that refers to a domain identity capability. These rules are ANDed together |
|
CapabilityRuleMatchExpressionsInner |
|
The response for the creation of a new capsule |
|
A summary of the capsule |
|
List of capsules |
|
A request to open (decrypt) a capsule |
|
Contains key material for a capsule |
|
the material required for enacting read context configuration (e.g. wasm stuff) |
|
Information applied when sealing a capsule (marking it as complete) |
|
Returned when attempting to delete a resource that is still in use by other resources |
|
Configuration options for creating a new subdomain. |
|
A request to classify PII in a batch of records |
|
DataTaggingHookInputRecordsInner |
|
DataTaggingHookInputRecordsInnerElementsInner |
|
A response from invoking a data tagging hook |
|
DataTaggingHookResponseRecordsInner |
|
DeleteTags |
|
Information about a domain |
|
DomainAddReadContextRule200Response |
|
An object containing external credentials that can be transmuted into a domain identity token |
|
A domain identity token |
|
Parameters to request new validation request |
|
Results for a domain control log query |
|
The results for a query of the capsule access log |
|
A list of defined fact types in the domain |
|
A list of available hooks in this domain |
|
DomainHooksListHooksInner |
|
Details for an API key principal |
|
Details for an email principal |
|
Additional details for a hosted domain principal |
|
DomainIdentityPrincipalDetails |
|
DomainIdentityProviderDetails |
|
Information about an identity provider. This may be an imported provider or a provider in this domain |
|
A list of identity providers |
|
A list of principals in an identity provider |
|
Details to create a domain identity principal |
|
Principal type supported by an identity provider |
|
Type of the identity provider. |
|
DomainInsertIdentityProviderPrincipal200Response |
|
DomainInsertWriteContextRegexRule200Response |
|
Configuration of a domain peer. If the import alias is absent, the domain ID, without the initial "dm-" prefix, will be used |
|
Information about the domains that this domain is peered with |
|
DomainPeerListPeersInner |
|
A domain's policy. These rules govern who can view, edit or use which parts of a domain's configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is 'deny'. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow. |
|
A rule governing the domain's policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted. |
|
Private information about a domain |
|
Public information about a domain |
|
A list of the resources and permissions available |
|
DomainResourceSummarySchemaInner |
|
Additional configuration options for a domain |
|
DomainSettingsDisasterRecovery |
|
A JSON patch to apply to the domain settings |
|
Information about the status of the domain |
|
DomainStatusNotificationsInner |
|
Ordered list of the top 100 tags. |
|
An internal error |
|
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name) |
|
A list of facts |
|
FactPolicyRulesInner |
|
FactPolicyRulesInnerArgumentsInner |
|
A type definition (schema) for a fact |
|
The GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations. |
|
Detailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used. |
|
The name and version of a hook that has been invoked on a capsule. |
|
Returned when one of the identifiers or arguments in the request is invalid |
|
JSONPatchRequestAdd |
|
The value to add. |
|
JSONPatchRequestCopy |
|
JSONPatchRequestMove |
|
JSONPatchRequestRemove |
|
JSONPatchRequestReplace |
|
The value to replace. |
|
JSONPatchRequestTst |
|
The value to test. |
|
Holds the required service account information for varying providers. |
|
KeyInfosKeyInformation |
|
An individual capsule data-plane log entry, in the form required when inserting a new record |
|
information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read. |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
Parameters when creating a domain |
|
Information returned from a successful domain create request |
|
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name) |
|
A type definition (schema) for a fact being created |
|
NewFactTypeDefinitionArgumentsInner |
|
Information about what must be done to data when it is read from a capsule |
|
PatchRequestInner |
|
Detailed information about a principal |
|
PrincipalSummary |
|
Information about what must be done to data when it is read from a capsule |
|
Details about a read context |
|
A list of read contexts |
|
Declare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc). |
|
ReadContextRequiredHook |
|
ReadContextRuleFactsInner |
|
ReadContextRuleFactsInnerArgumentsInner |
|
ReadContextRuleMatchExpressionsInner |
|
Abridged details about a read context |
|
Returned when the server is unable to process the request due to resource exhaustion or rate limiting |
|
Returned when interacting with a valid URL, but the request references an unknown resource |
|
The newly created root encryption key's ID. |
|
RootEncryptionKeyItem |
|
RootEncryptionKeyTestResponse |
|
The results for a query of the capsule access log |
|
StarredDomainList |
|
Tag |
|
TagMeta |
|
TagSet |
|
TagSetSpanTagsInner |
|
TagSummary |
|
TagSummaryElidedTagsInner |
|
TagSummaryUniqueTagsInner |
|
the type of this tag |
|
Returned when the server cannot authorize the request |
|
UpsertSpanTagsRequest |
|
Returned by successful contact email verification |
|
Information about write context config rules |
|
WriteContextConfigInfoRequiredHooksInner |
|
Details about a write context |
|
A list of write contexts |
|
Regex classifier rule for a write context |
|
Tag descriptor for a write context regex rule |
- class antimatter.client.models.APIKeyDomainIdentityProviderDetails(/, **data: Any)#
Bases:
pydantic.BaseModelDetailed information about an API key identity provider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of APIKeyDomainIdentityProviderDetails from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of APIKeyDomainIdentityProviderDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AWSServiceAccountKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModelThe AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- access_key_id: pydantic.StrictStr#
- secret_access_key: pydantic.StrictStr#
- key_arn: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AWSServiceAccountKeyInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AWSServiceAccountKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AccessLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModelAn individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- time: datetime.datetime#
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- capsule: typing_extensions.Annotated[str, Field(strict=True)]#
- operation: pydantic.StrictStr#
- session: typing_extensions.Annotated[str, Field(strict=True)]#
- location: pydantic.StrictStr | None#
- create_info: antimatter.client.models.access_log_entry_create_info.AccessLogEntryCreateInfo | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- domain_validate_regular_expression(value)#
Validates the regular expression
- capsule_validate_regular_expression(value)#
Validates the regular expression
- operation_validate_enum(value)#
Validates the enum
- session_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AccessLogEntry from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AccessLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AccessLogEntryCreateInfo(/, **data: Any)#
Bases:
pydantic.BaseModelinformation available if the operation is of type “create”.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- write_context: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- write_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AccessLogEntryCreateInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AccessLogEntryCreateInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AccessLogEntryOpenInfo(/, **data: Any)#
Bases:
pydantic.BaseModelinformation available if the operation is of type “open”.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- read_context: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- read_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AccessLogEntryOpenInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AccessLogEntryOpenInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AccessLogEntryReadInfo(/, **data: Any)#
Bases:
pydantic.BaseModelinformation available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- parameters: Dict[str, pydantic.StrictStr]#
- read_context: typing_extensions.Annotated[str, Field(strict=True)]#
- allowed_tags: antimatter.client.models.tag_summary.TagSummary#
- redacted_tags: antimatter.client.models.tag_summary.TagSummary#
- tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
- returned_records: pydantic.StrictInt#
- filtered_records: pydantic.StrictInt#
- model_config#
- read_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AccessLogEntryReadInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AccessLogEntryReadInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AccessLogResults(/, **data: Any)#
Bases:
pydantic.BaseModelThe results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- results: List[antimatter.client.models.access_log_entry.AccessLogEntry]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AccessLogResults from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AccessLogResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ActiveRootEncryptionKeyID(/, **data: Any)#
Bases:
pydantic.BaseModelThe stored key ID to use as the active root encryption key.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- key_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ActiveRootEncryptionKeyID from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ActiveRootEncryptionKeyID from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AddCapsuleLogEntryRequest(/, **data: Any)#
Bases:
pydantic.BaseModelA request to add a capsule log entry
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AddCapsuleLogEntryRequest from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AddCapsuleLogEntryRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AddReadContext(/, **data: Any)#
Bases:
pydantic.BaseModelA request to add read contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AddReadContext from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AddReadContext from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AddWriteContext(/, **data: Any)#
Bases:
pydantic.BaseModelInformation for adding/updating a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AddWriteContext from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AddWriteContext from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AntimatterDelegatedAWSKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModelThe details required to use an AWS KMS root encryption key that has been delegated to Antimatter’s AWS account. This will use Antimatter’s service account during set up of the AWS client.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_arn: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AntimatterDelegatedAWSKeyInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AntimatterDelegatedAWSKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AvailableDelegatedRootEncryptionKeyProvider(/, **data: Any)#
Bases:
pydantic.BaseModelAvailableDelegatedRootEncryptionKeyProvider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- short_name: pydantic.StrictStr#
- description: pydantic.StrictStr#
- account_details: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AvailableRootEncryptionKeyProviders(/, **data: Any)#
Bases:
pydantic.BaseModelAvailableRootEncryptionKeyProviders
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- providers: List[antimatter.client.models.available_root_encryption_key_providers_providers_inner.AvailableRootEncryptionKeyProvidersProvidersInner] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AvailableRootEncryptionKeyProviders from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AvailableRootEncryptionKeyProviders from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AvailableRootEncryptionKeyProvidersProvidersInner(*args, **kwargs)#
Bases:
pydantic.BaseModelAvailableRootEncryptionKeyProvidersProvidersInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | None#
- oneof_schema_2_validator: antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
- actual_instance: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.AvailableServiceAccountRootEncryptionKeyProvider(/, **data: Any)#
Bases:
pydantic.BaseModelAvailableServiceAccountRootEncryptionKeyProvider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- short_name: pydantic.StrictStr#
- description: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.Capability(/, **data: Any)#
Bases:
pydantic.BaseModelA capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of Capability from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of Capability from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapabilityDefinition(/, **data: Any)#
Bases:
pydantic.BaseModelA capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- unary: pydantic.StrictBool#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapabilityDefinition from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapabilityDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapabilityDefinitionList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of capability definitions
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability_definition.CapabilityDefinition]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapabilityDefinitionList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapabilityDefinitionList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapabilityList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of capabilities
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapabilityList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapabilityList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapabilityRule(/, **data: Any)#
Bases:
pydantic.BaseModelA rule that refers to a domain identity capability. These rules are ANDed together
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- match_expressions: List[antimatter.client.models.capability_rule_match_expressions_inner.CapabilityRuleMatchExpressionsInner] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapabilityRule from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapabilityRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapabilityRuleMatchExpressionsInner(/, **data: Any)#
Bases:
pydantic.BaseModelCapabilityRuleMatchExpressionsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- operator: pydantic.StrictStr#
- values: List[pydantic.StrictStr]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- operator_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapabilityRuleMatchExpressionsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapabilityRuleMatchExpressionsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleCreateResponse(/, **data: Any)#
Bases:
pydantic.BaseModelThe response for the creation of a new capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- data_key: pydantic.StrictBytes | pydantic.StrictStr#
- encrypted_data_key: pydantic.StrictBytes | pydantic.StrictStr#
- key_encryption_key_id: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- write_context_configuration: antimatter.client.models.write_context_config_info.WriteContextConfigInfo#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleCreateResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleCreateResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleInfo(/, **data: Any)#
Bases:
pydantic.BaseModelA summary of the capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- size: pydantic.StrictInt#
- created: datetime.datetime#
- page_key: pydantic.StrictStr | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- domain_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleList(/, **data: Any)#
Bases:
pydantic.BaseModelList of capsules
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- results: List[antimatter.client.models.capsule_info.CapsuleInfo]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleOpenRequest(/, **data: Any)#
Bases:
pydantic.BaseModelA request to open (decrypt) a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- encrypted_dek: pydantic.StrictBytes | pydantic.StrictStr#
- key_id: pydantic.StrictInt#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleOpenRequest from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleOpenRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleOpenResponse(/, **data: Any)#
Bases:
pydantic.BaseModelContains key material for a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- decryption_key: pydantic.StrictBytes | pydantic.StrictStr#
- read_context_configuration: antimatter.client.models.capsule_open_response_read_context_configuration.CapsuleOpenResponseReadContextConfiguration#
- open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleOpenResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleOpenResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleOpenResponseReadContextConfiguration(/, **data: Any)#
Bases:
pydantic.BaseModelthe material required for enacting read context configuration (e.g. wasm stuff)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- policy_assembly: pydantic.StrictBytes | pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleOpenResponseReadContextConfiguration from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleOpenResponseReadContextConfiguration from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CapsuleSealRequest(/, **data: Any)#
Bases:
pydantic.BaseModelInformation applied when sealing a capsule (marking it as complete)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- size: pydantic.StrictInt#
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CapsuleSealRequest from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CapsuleSealRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ConflictError(/, **data: Any)#
Bases:
pydantic.BaseModelReturned when attempting to delete a resource that is still in use by other resources
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ConflictError from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ConflictError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.CreatePeerDomain(/, **data: Any)#
Bases:
pydantic.BaseModelConfiguration options for creating a new subdomain.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
- import_alias_for_parent: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- import_alias_for_child: typing_extensions.Annotated[str, Field(strict=True)]#
- display_name_for_parent: Optional[typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]]#
- display_name_for_child: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
- link_all: pydantic.StrictBool | None#
- link_identity_providers: pydantic.StrictBool | None#
- link_facts: pydantic.StrictBool | None#
- link_read_contexts: pydantic.StrictBool | None#
- link_write_contexts: pydantic.StrictBool | None#
- link_capabilities: pydantic.StrictBool | None#
- link_domain_policy: pydantic.StrictBool | None#
- link_capsule_access_log: pydantic.StrictBool | None#
- link_control_log: pydantic.StrictBool | None#
- link_capsule_manifest: pydantic.StrictBool | None#
- model_config#
- import_alias_for_parent_validate_regular_expression(value)#
Validates the regular expression
- import_alias_for_child_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of CreatePeerDomain from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of CreatePeerDomain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DataTaggingHookInput(/, **data: Any)#
Bases:
pydantic.BaseModelA request to classify PII in a batch of records
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- records: List[antimatter.client.models.data_tagging_hook_input_records_inner.DataTaggingHookInputRecordsInner]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DataTaggingHookInput from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DataTaggingHookInput from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DataTaggingHookInputRecordsInner(/, **data: Any)#
Bases:
pydantic.BaseModelDataTaggingHookInputRecordsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- elements: List[antimatter.client.models.data_tagging_hook_input_records_inner_elements_inner.DataTaggingHookInputRecordsInnerElementsInner]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DataTaggingHookInputRecordsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DataTaggingHookInputRecordsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DataTaggingHookInputRecordsInnerElementsInner(/, **data: Any)#
Bases:
pydantic.BaseModelDataTaggingHookInputRecordsInnerElementsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- content: pydantic.StrictStr#
- path: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DataTaggingHookResponse(/, **data: Any)#
Bases:
pydantic.BaseModelA response from invoking a data tagging hook
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- version: typing_extensions.Annotated[str, Field(strict=True)]#
- records: List[antimatter.client.models.data_tagging_hook_response_records_inner.DataTaggingHookResponseRecordsInner]#
- model_config#
- version_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DataTaggingHookResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DataTaggingHookResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DataTaggingHookResponseRecordsInner(/, **data: Any)#
Bases:
pydantic.BaseModelDataTaggingHookResponseRecordsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- elements: List[antimatter.client.models.tag_set.TagSet]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DataTaggingHookResponseRecordsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DataTaggingHookResponseRecordsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DeleteTags(/, **data: Any)#
Bases:
pydantic.BaseModelDeleteTags
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- names: List[pydantic.StrictStr] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DeleteTags from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DeleteTags from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.Domain(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of Domain from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of Domain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainAddReadContextRule200Response(/, **data: Any)#
Bases:
pydantic.BaseModelDomainAddReadContextRule200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainAddReadContextRule200Response from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainAddReadContextRule200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainAuthenticate(/, **data: Any)#
Bases:
pydantic.BaseModelAn object containing external credentials that can be transmuted into a domain identity token
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- token: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainAuthenticate from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainAuthenticate from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainAuthenticateResponse(/, **data: Any)#
Bases:
pydantic.BaseModelA domain identity token
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- token: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainAuthenticateResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainAuthenticateResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainContactIssueVerifyRequest(/, **data: Any)#
Bases:
pydantic.BaseModelParameters to request new validation request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainContactIssueVerifyRequest from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainContactIssueVerifyRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainControlLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModelResults for a domain control log query
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- time: datetime.datetime#
- session: typing_extensions.Annotated[str, Field(strict=True)]#
- url: pydantic.StrictStr#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=100)]#
- description: Dict[str, pydantic.StrictStr]#
- model_config#
- domain_validate_regular_expression(value)#
Validates the regular expression
- id_validate_regular_expression(value)#
Validates the regular expression
- session_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainControlLogEntry from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainControlLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainControlLogResults(/, **data: Any)#
Bases:
pydantic.BaseModelThe results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainControlLogResults from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainControlLogResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainFactList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of defined fact types in the domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- fact_types: List[antimatter.client.models.fact_type_definition.FactTypeDefinition]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainFactList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainFactList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainHooksList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of available hooks in this domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hooks: List[antimatter.client.models.domain_hooks_list_hooks_inner.DomainHooksListHooksInner] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainHooksList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainHooksList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainHooksListHooksInner(/, **data: Any)#
Bases:
pydantic.BaseModelDomainHooksListHooksInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- url: pydantic.StrictStr#
- version: pydantic.StrictStr#
- summary: pydantic.StrictStr#
- description: pydantic.StrictStr#
- output_span_tags: List[pydantic.StrictStr]#
- output_capsule_tags: List[pydantic.StrictStr]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainHooksListHooksInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainHooksListHooksInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityAPIKeyPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModelDetails for an API key principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- api_key_id: pydantic.StrictStr | None#
- comment: pydantic.StrictStr | None#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityAPIKeyPrincipalParams from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityAPIKeyPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityEmailPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModelDetails for an email principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- email: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityEmailPrincipalParams from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityEmailPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityHostedDomainPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModelAdditional details for a hosted domain principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- hosted_domain: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityHostedDomainPrincipalParams from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityHostedDomainPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityPrincipalDetails(*args, **kwargs)#
Bases:
pydantic.BaseModelDomainIdentityPrincipalDetails
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | None#
- oneof_schema_2_validator: antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | None#
- oneof_schema_3_validator: antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
- actual_instance: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderDetails(*args, **kwargs)#
Bases:
pydantic.BaseModelDomainIdentityProviderDetails
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
- oneof_schema_2_validator: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | None#
- actual_instance: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderInfo(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about an identity provider. This may be an imported provider or a provider in this domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- supported_principals: List[antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType]#
- details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityProviderInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of identity providers
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityProviderList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderPrincipalList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of principals in an identity provider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principals: List[antimatter.client.models.principal_summary.PrincipalSummary]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderPrincipalList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityProviderPrincipalList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModelDetails to create a domain identity principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderPrincipalParams from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainIdentityProviderPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainIdentityProviderPrincipalType#
Bases:
str,enum.EnumPrincipal type supported by an identity provider
- APIKEY = 'APIKey'#
- EMAIL = 'Email'#
- HOSTEDDOMAIN = 'HostedDomain'#
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderPrincipalType from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.models.DomainIdentityProviderType#
Bases:
str,enum.EnumType of the identity provider.
- GOOGLEOAUTH = 'GoogleOAuth'#
- GCPSERVICEACCOUNT = 'GCPServiceAccount'#
- APIKEY = 'APIKey'#
- classmethod from_json(json_str: str) Self#
Create an instance of DomainIdentityProviderType from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.models.DomainInsertIdentityProviderPrincipal200Response(/, **data: Any)#
Bases:
pydantic.BaseModelDomainInsertIdentityProviderPrincipal200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- api_key: pydantic.StrictStr | None#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainInsertIdentityProviderPrincipal200Response from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainInsertIdentityProviderPrincipal200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainInsertWriteContextRegexRule200Response(/, **data: Any)#
Bases:
pydantic.BaseModelDomainInsertWriteContextRegexRule200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- rule_id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- rule_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainInsertWriteContextRegexRule200Response from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainInsertWriteContextRegexRule200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPeerConfig(/, **data: Any)#
Bases:
pydantic.BaseModelConfiguration of a domain peer. If the import alias is absent, the domain ID, without the initial “dm-” prefix, will be used
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- export_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_identity_providers: pydantic.StrictBool | None#
- export_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_facts: pydantic.StrictBool | None#
- export_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_read_contexts: pydantic.StrictBool | None#
- export_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_write_contexts: pydantic.StrictBool | None#
- export_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_capabilities: pydantic.StrictBool | None#
- export_domain_policy: pydantic.StrictBool | None#
- export_capsule_access_log: pydantic.StrictBool | None#
- export_control_log: pydantic.StrictBool | None#
- export_capsule_manifest: pydantic.StrictBool | None#
- export_billing: pydantic.StrictBool | None#
- export_admin_contact: pydantic.StrictBool | None#
- nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
- import_alias: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- forward_billing: pydantic.StrictBool | None#
- forward_admin_communications: pydantic.StrictBool | None#
- import_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_identity_providers: pydantic.StrictBool | None#
- import_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_facts: pydantic.StrictBool | None#
- import_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_read_contexts: pydantic.StrictBool | None#
- import_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_write_contexts: pydantic.StrictBool | None#
- import_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_capabilities: pydantic.StrictBool | None#
- import_domain_policy: pydantic.StrictBool | None#
- import_precedence: pydantic.StrictInt | None#
- import_capsule_access_log: pydantic.StrictBool | None#
- import_control_log: pydantic.StrictBool | None#
- import_capsule_manifest: pydantic.StrictBool | None#
- display_name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
- model_config#
- import_alias_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPeerConfig from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPeerConfig from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPeerList(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about the domains that this domain is peered with
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPeerList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPeerList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPeerListPeersInner(/, **data: Any)#
Bases:
pydantic.BaseModelDomainPeerListPeersInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- alias: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- alias_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPeerListPeersInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPeerListPeersInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPolicy(/, **data: Any)#
Bases:
pydantic.BaseModelA domain’s policy. These rules govern who can view, edit or use which parts of a domain’s configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is ‘deny’. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPolicy from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPolicy from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPolicyRule(/, **data: Any)#
Bases:
pydantic.BaseModelA rule governing the domain’s policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- domain_identity: antimatter.client.models.capability_rule.CapabilityRule | None#
- facts: List[antimatter.client.models.fact_policy_rules_inner.FactPolicyRulesInner] | None#
- path: pydantic.StrictStr#
- operation: pydantic.StrictStr#
- result: pydantic.StrictStr#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- disabled: pydantic.StrictBool#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- operation_validate_enum(value)#
Validates the enum
- result_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPolicyRule from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPolicyRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPrivateInfo(/, **data: Any)#
Bases:
pydantic.BaseModelPrivate information about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPrivateInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPrivateInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainPublicInfo(/, **data: Any)#
Bases:
pydantic.BaseModelPublic information about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainPublicInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainPublicInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainResourceSummary(/, **data: Any)#
Bases:
pydantic.BaseModelA list of the resources and permissions available
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- var_schema: List[antimatter.client.models.domain_resource_summary_schema_inner.DomainResourceSummarySchemaInner]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainResourceSummary from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainResourceSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainResourceSummarySchemaInner(/, **data: Any)#
Bases:
pydantic.BaseModelDomainResourceSummarySchemaInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource: pydantic.StrictStr#
- operations: List[pydantic.StrictStr]#
- placeholder_values: Dict[str, List[pydantic.StrictStr]]#
- description: pydantic.StrictStr#
- model_config#
- operations_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainResourceSummarySchemaInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainResourceSummarySchemaInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainSettings(/, **data: Any)#
Bases:
pydantic.BaseModelAdditional configuration options for a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- disaster_recovery: antimatter.client.models.domain_settings_disaster_recovery.DomainSettingsDisasterRecovery | None#
- admin_contacts: List[pydantic.StrictStr]#
- active_admin_contacts: List[pydantic.StrictStr] | None#
- pending_admin_contacts: List[pydantic.StrictStr] | None#
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainSettings from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainSettings from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainSettingsDisasterRecovery(/, **data: Any)#
Bases:
pydantic.BaseModelDomainSettingsDisasterRecovery
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- enable: pydantic.StrictBool | None#
- public_key: pydantic.StrictStr | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainSettingsDisasterRecovery from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainSettingsDisasterRecovery from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainSettingsPatch(/, **data: Any)#
Bases:
pydantic.BaseModelA JSON patch to apply to the domain settings
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainSettingsPatch from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainSettingsPatch from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainStatus(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about the status of the domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- notifications: List[antimatter.client.models.domain_status_notifications_inner.DomainStatusNotificationsInner] | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainStatus from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainStatus from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainStatusNotificationsInner(/, **data: Any)#
Bases:
pydantic.BaseModelDomainStatusNotificationsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: pydantic.StrictStr#
- description: pydantic.StrictStr#
- type: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainStatusNotificationsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainStatusNotificationsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.DomainTagInfoResults(/, **data: Any)#
Bases:
pydantic.BaseModelOrdered list of the top 100 tags.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- tags: List[antimatter.client.models.tag_meta.TagMeta]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of DomainTagInfoResults from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of DomainTagInfoResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.Error(/, **data: Any)#
Bases:
pydantic.BaseModelAn internal error
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- trace_id: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of Error from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of Error from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.Fact(/, **data: Any)#
Bases:
pydantic.BaseModelA fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of Fact from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of Fact from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.FactList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of facts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- facts: List[antimatter.client.models.fact.Fact]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of FactList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of FactList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.FactPolicyRulesInner(/, **data: Any)#
Bases:
pydantic.BaseModelFactPolicyRulesInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operator: pydantic.StrictStr#
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.fact_policy_rules_inner_arguments_inner.FactPolicyRulesInnerArgumentsInner], Field(max_length=16)]#
- model_config#
- operator_validate_enum(value)#
Validates the enum
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of FactPolicyRulesInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of FactPolicyRulesInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.FactPolicyRulesInnerArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModelFactPolicyRulesInnerArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- any: pydantic.StrictBool | None#
- source: pydantic.StrictStr | None#
- capability: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- capability_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of FactPolicyRulesInnerArgumentsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of FactPolicyRulesInnerArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.FactTypeDefinition(/, **data: Any)#
Bases:
pydantic.BaseModelA type definition (schema) for a fact
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of FactTypeDefinition from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of FactTypeDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.GCPServiceAccountKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModelThe GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- service_account_credentials: pydantic.StrictBytes | pydantic.StrictStr#
- project_id: pydantic.StrictStr#
- location: pydantic.StrictStr#
- keyring_id: pydantic.StrictStr#
- key_id: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of GCPServiceAccountKeyInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of GCPServiceAccountKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.GoogleOAuthDomainIdentityProviderDetails(/, **data: Any)#
Bases:
pydantic.BaseModelDetailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- client_id: pydantic.StrictStr | None#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of GoogleOAuthDomainIdentityProviderDetails from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of GoogleOAuthDomainIdentityProviderDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.HookInvocation(/, **data: Any)#
Bases:
pydantic.BaseModelThe name and version of a hook that has been invoked on a capsule.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- version: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of HookInvocation from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of HookInvocation from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.InvalidRequestError(/, **data: Any)#
Bases:
pydantic.BaseModelReturned when one of the identifiers or arguments in the request is invalid
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- field: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of InvalidRequestError from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of InvalidRequestError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestAdd(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestAdd
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestAdd from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestAdd from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestAddValue(*args, **kwargs)#
Bases:
pydantic.BaseModelThe value to add.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestCopy(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestCopy
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestCopy from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestCopy from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestMove(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestMove
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestMove from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestMove from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestRemove(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestRemove
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestRemove from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestRemove from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestReplace(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestReplace
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestReplace from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestReplace from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestReplaceValue(*args, **kwargs)#
Bases:
pydantic.BaseModelThe value to replace.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestTst(/, **data: Any)#
Bases:
pydantic.BaseModelJSONPatchRequestTst
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of JSONPatchRequestTst from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of JSONPatchRequestTst from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.JSONPatchRequestTstValue(*args, **kwargs)#
Bases:
pydantic.BaseModelThe value to test.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.KeyInfos(/, **data: Any)#
Bases:
pydantic.BaseModelHolds the required service account information for varying providers.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- description: pydantic.StrictStr | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of KeyInfos from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of KeyInfos from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.KeyInfosKeyInformation(*args, **kwargs)#
Bases:
pydantic.BaseModelKeyInfosKeyInformation
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
- oneof_schema_2_validator: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | None#
- oneof_schema_3_validator: antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | None#
- actual_instance: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewAccessLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModelAn individual capsule data-plane log entry, in the form required when inserting a new record
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operation: pydantic.StrictStr#
- location: pydantic.StrictStr | None#
- model_config#
- operation_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewAccessLogEntry from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewAccessLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewAccessLogEntryReadInfo(/, **data: Any)#
Bases:
pydantic.BaseModelinformation available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- parameters: Dict[str, pydantic.StrictStr]#
- allowed_tags: antimatter.client.models.tag_summary.TagSummary#
- redacted_tags: antimatter.client.models.tag_summary.TagSummary#
- tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
- returned_records: pydantic.StrictInt#
- filtered_records: pydantic.StrictInt#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewAccessLogEntryReadInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewAccessLogEntryReadInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewCapabilityDefinition(/, **data: Any)#
Bases:
pydantic.BaseModelA capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- unary: pydantic.StrictBool#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewCapabilityDefinition from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewCapabilityDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewDomain(/, **data: Any)#
Bases:
pydantic.BaseModelParameters when creating a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
- display_name: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=40)]]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewDomain from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewDomain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewDomainResponse(/, **data: Any)#
Bases:
pydantic.BaseModelInformation returned from a successful domain create request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- api_key: pydantic.StrictStr#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewDomainResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewDomainResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewFact(/, **data: Any)#
Bases:
pydantic.BaseModelA fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewFact from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewFact from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewFactTypeDefinition(/, **data: Any)#
Bases:
pydantic.BaseModelA type definition (schema) for a fact being created
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewFactTypeDefinition from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewFactTypeDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewFactTypeDefinitionArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModelNewFactTypeDefinitionArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=32)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=128)]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewFactTypeDefinitionArgumentsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewFactTypeDefinitionArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.NewReadContextConfigRule(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about what must be done to data when it is read from a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
- action: pydantic.StrictStr#
- token_scope: pydantic.StrictStr | None#
- token_format: pydantic.StrictStr | None#
- facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- model_config#
- action_validate_enum(value)#
Validates the enum
- token_scope_validate_enum(value)#
Validates the enum
- token_format_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of NewReadContextConfigRule from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of NewReadContextConfigRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.PatchRequestInner(*args, **kwargs)#
Bases:
pydantic.BaseModelPatchRequestInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | None#
- oneof_schema_2_validator: antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | None#
- oneof_schema_3_validator: antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
- oneof_schema_4_validator: antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | None#
- oneof_schema_5_validator: antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | None#
- oneof_schema_6_validator: antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | None#
- actual_instance: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self#
- classmethod from_json(json_str: str) Self#
Returns the object represented by the json string
- to_json() str#
Returns the JSON representation of the actual instance
- to_dict() Dict#
Returns the dict representation of the actual instance
- to_str() str#
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.PrincipalInfo(/, **data: Any)#
Bases:
pydantic.BaseModelDetailed information about a principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of PrincipalInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of PrincipalInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.PrincipalSummary(/, **data: Any)#
Bases:
pydantic.BaseModelPrincipalSummary
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- principal_type: antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of PrincipalSummary from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of PrincipalSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextConfigRule(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about what must be done to data when it is read from a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
- action: pydantic.StrictStr#
- token_scope: pydantic.StrictStr | None#
- token_format: pydantic.StrictStr | None#
- facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- action_validate_enum(value)#
Validates the enum
- token_scope_validate_enum(value)#
Validates the enum
- token_format_validate_enum(value)#
Validates the enum
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextConfigRule from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextConfigRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextDetails(/, **data: Any)#
Bases:
pydantic.BaseModelDetails about a read context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextDetails from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of read contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- read_contexts: List[antimatter.client.models.read_context_short_details.ReadContextShortDetails]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextParameter(/, **data: Any)#
Bases:
pydantic.BaseModelDeclare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc).
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key: pydantic.StrictStr | None#
- required: pydantic.StrictBool | None#
- description: pydantic.StrictStr | None#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextParameter from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextParameter from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextRequiredHook(/, **data: Any)#
Bases:
pydantic.BaseModelReadContextRequiredHook
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hook: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- constraint: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- write_context: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- hook_validate_regular_expression(value)#
Validates the regular expression
- constraint_validate_regular_expression(value)#
Validates the regular expression
- write_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextRequiredHook from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextRequiredHook from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextRuleFactsInner(/, **data: Any)#
Bases:
pydantic.BaseModelReadContextRuleFactsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operator: pydantic.StrictStr | None#
- name: pydantic.StrictStr | None#
- arguments: List[antimatter.client.models.read_context_rule_facts_inner_arguments_inner.ReadContextRuleFactsInnerArgumentsInner] | None#
- model_config#
- operator_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextRuleFactsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextRuleFactsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextRuleFactsInnerArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModelReadContextRuleFactsInnerArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr | None#
- key: pydantic.StrictStr | None#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextRuleFactsInnerArgumentsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextRuleFactsInnerArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextRuleMatchExpressionsInner(/, **data: Any)#
Bases:
pydantic.BaseModelReadContextRuleMatchExpressionsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr#
- key: pydantic.StrictStr#
- operator: pydantic.StrictStr#
- values: List[pydantic.StrictStr] | None#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- operator_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextRuleMatchExpressionsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextRuleMatchExpressionsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ReadContextShortDetails(/, **data: Any)#
Bases:
pydantic.BaseModelAbridged details about a read context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ReadContextShortDetails from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ReadContextShortDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ResourceExhaustedError(/, **data: Any)#
Bases:
pydantic.BaseModelReturned when the server is unable to process the request due to resource exhaustion or rate limiting
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ResourceExhaustedError from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ResourceExhaustedError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.ResourceNotFoundError(/, **data: Any)#
Bases:
pydantic.BaseModelReturned when interacting with a valid URL, but the request references an unknown resource
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of ResourceNotFoundError from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of ResourceNotFoundError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.RootEncryptionKeyIDResponse(/, **data: Any)#
Bases:
pydantic.BaseModelThe newly created root encryption key’s ID.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- rek_id: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of RootEncryptionKeyIDResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of RootEncryptionKeyIDResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.RootEncryptionKeyItem(/, **data: Any)#
Bases:
pydantic.BaseModelRootEncryptionKeyItem
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr#
- var_resource_path: pydantic.StrictStr#
- rek_id: pydantic.StrictStr#
- description: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of RootEncryptionKeyItem from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of RootEncryptionKeyItem from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.RootEncryptionKeyTestResponse(/, **data: Any)#
Bases:
pydantic.BaseModelRootEncryptionKeyTestResponse
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- source: pydantic.StrictStr#
- var_resource_path: pydantic.StrictStr#
- description: pydantic.StrictStr#
- status: pydantic.StrictStr#
- status_message: pydantic.StrictStr#
- latency_ms: pydantic.StrictFloat | pydantic.StrictInt#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- status_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of RootEncryptionKeyTestResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of RootEncryptionKeyTestResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.RotateKeyEncryptionKeyResponse(/, **data: Any)#
Bases:
pydantic.BaseModelThe results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of RotateKeyEncryptionKeyResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of RotateKeyEncryptionKeyResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.StarredDomainList(/, **data: Any)#
Bases:
pydantic.BaseModelStarredDomainList
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domains: List[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of StarredDomainList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of StarredDomainList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.Tag(/, **data: Any)#
Bases:
pydantic.BaseModelTag
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- value: typing_extensions.Annotated[str, Field(strict=True, max_length=256)]#
- source: pydantic.StrictStr#
- hook_version: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- hook_version_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of Tag from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of Tag from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagMeta(/, **data: Any)#
Bases:
pydantic.BaseModelTagMeta
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagMeta from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagMeta from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagSet(/, **data: Any)#
Bases:
pydantic.BaseModelTagSet
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagSet from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagSet from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagSetSpanTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModelTagSetSpanTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- start: pydantic.StrictInt#
- end: pydantic.StrictInt#
- tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagSetSpanTagsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagSetSpanTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagSummary(/, **data: Any)#
Bases:
pydantic.BaseModelTagSummary
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- unique_tags: List[antimatter.client.models.tag_summary_unique_tags_inner.TagSummaryUniqueTagsInner]#
- elided_tags: List[antimatter.client.models.tag_summary_elided_tags_inner.TagSummaryElidedTagsInner]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagSummary from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagSummaryElidedTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModelTagSummaryElidedTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- tag_name: pydantic.StrictStr#
- num_unique_tags: pydantic.StrictInt#
- total_occurrences: pydantic.StrictInt#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagSummaryElidedTagsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagSummaryElidedTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagSummaryUniqueTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModelTagSummaryUniqueTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- occurrences: pydantic.StrictInt#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of TagSummaryUniqueTagsInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of TagSummaryUniqueTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.TagTypeField#
Bases:
str,enum.Enumthe type of this tag
- STRING = 'string'#
- NUMBER = 'number'#
- BOOLEAN = 'boolean'#
- DATE = 'date'#
- UNARY = 'unary'#
- classmethod from_json(json_str: str) Self#
Create an instance of TagTypeField from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.models.UnauthorizedError(/, **data: Any)#
Bases:
pydantic.BaseModelReturned when the server cannot authorize the request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- message: pydantic.StrictStr#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of UnauthorizedError from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of UnauthorizedError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.UpsertSpanTagsRequest(/, **data: Any)#
Bases:
pydantic.BaseModelUpsertSpanTagsRequest
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of UpsertSpanTagsRequest from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of UpsertSpanTagsRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.VerifyContactResponse(/, **data: Any)#
Bases:
pydantic.BaseModelReturned by successful contact email verification
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- email: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- domain_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of VerifyContactResponse from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of VerifyContactResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextConfigInfo(/, **data: Any)#
Bases:
pydantic.BaseModelInformation about write context config rules
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_reuse_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.write_context_config_info_required_hooks_inner.WriteContextConfigInfoRequiredHooksInner]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextConfigInfo from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextConfigInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextConfigInfoRequiredHooksInner(/, **data: Any)#
Bases:
pydantic.BaseModelWriteContextConfigInfoRequiredHooksInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hook: typing_extensions.Annotated[str, Field(strict=True)]#
- constraint: typing_extensions.Annotated[str, Field(strict=True)]#
- mode: pydantic.StrictStr#
- model_config#
- hook_validate_regular_expression(value)#
Validates the regular expression
- constraint_validate_regular_expression(value)#
Validates the regular expression
- mode_validate_enum(value)#
Validates the enum
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextConfigInfoRequiredHooksInner from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextConfigInfoRequiredHooksInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextDetails(/, **data: Any)#
Bases:
pydantic.BaseModelDetails about a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextDetails from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextList(/, **data: Any)#
Bases:
pydantic.BaseModelA list of write contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- write_contexts: List[antimatter.client.models.write_context_details.WriteContextDetails]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextList from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextRegexRule(/, **data: Any)#
Bases:
pydantic.BaseModelRegex classifier rule for a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- pattern: pydantic.StrictStr#
- match_on_key: pydantic.StrictBool#
- capsule_tags: List[antimatter.client.models.write_context_regex_tag.WriteContextRegexTag]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextRegexRule from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextRegexRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#
- class antimatter.client.models.WriteContextRegexTag(/, **data: Any)#
Bases:
pydantic.BaseModelTag descriptor for a write context regex rule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
- model_config#
- to_str() str#
Returns the string representation of the model using alias
- to_json() str#
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self#
Create an instance of WriteContextRegexTag from a JSON string
- to_dict() Dict[str, Any]#
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self#
Create an instance of WriteContextRegexTag from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
- classmethod parse_obj(obj: Any) Model#
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
- classmethod from_orm(obj: Any) Model#
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
- classmethod validate(value: Any) Model#
- classmethod update_forward_refs(**localns: Any) None#