antimatter.client#

Antimatter Public API

Interact with the Antimatter Cloud API

The version of the OpenAPI document: 1.1.3 Contact: support@antimatter.io Generated by OpenAPI Generator (https://openapi-generator.tech)

Do not edit the class manually.

Subpackages#

Submodules#

Package Contents#

Classes#

DefaultApi

NOTE: This class is auto generated by OpenAPI Generator

ApiResponse

API response object

ApiClient

Generic API client for OpenAPI client library builds.

Configuration

This class contains various settings of the API client.

APIKeyDomainIdentityProviderDetails

Detailed information about an API key identity provider

AWSServiceAccountKeyInfo

The AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations.

AccessLogEntry

An individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in)

AccessLogEntryCreateInfo

information available if the operation is of type "create".

AccessLogEntryOpenInfo

information available if the operation is of type "open".

AccessLogEntryReadInfo

information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.

AccessLogResults

The results for a query of the capsule access log

ActiveRootEncryptionKeyID

The stored key ID to use as the active root encryption key.

AddCapsuleLogEntryRequest

A request to add a capsule log entry

AddReadContext

A request to add read contexts

AddWriteContext

Information for adding/updating a write context

AntimatterDelegatedAWSKeyInfo

The details required to use an AWS KMS root encryption key that has been delegated to Antimatter's AWS account. This will use Antimatter's service account during set up of the AWS client.

AvailableDelegatedRootEncryptionKeyProvider

AvailableDelegatedRootEncryptionKeyProvider

AvailableRootEncryptionKeyProviders

AvailableRootEncryptionKeyProviders

AvailableRootEncryptionKeyProvidersProvidersInner

AvailableRootEncryptionKeyProvidersProvidersInner

AvailableServiceAccountRootEncryptionKeyProvider

AvailableServiceAccountRootEncryptionKeyProvider

Capability

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

CapabilityDefinition

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

CapabilityDefinitionList

A list of capability definitions

CapabilityList

A list of capabilities

CapabilityRule

A rule that refers to a domain identity capability. These rules are ANDed together

CapabilityRuleMatchExpressionsInner

CapabilityRuleMatchExpressionsInner

CapsuleCreateResponse

The response for the creation of a new capsule

CapsuleInfo

A summary of the capsule

CapsuleList

List of capsules

CapsuleOpenRequest

A request to open (decrypt) a capsule

CapsuleOpenResponse

Contains key material for a capsule

CapsuleOpenResponseReadContextConfiguration

the material required for enacting read context configuration (e.g. wasm stuff)

CapsuleSealRequest

Information applied when sealing a capsule (marking it as complete)

ConflictError

Returned when attempting to delete a resource that is still in use by other resources

CreatePeerDomain

Configuration options for creating a new subdomain.

DataTaggingHookInput

A request to classify PII in a batch of records

DataTaggingHookInputRecordsInner

DataTaggingHookInputRecordsInner

DataTaggingHookInputRecordsInnerElementsInner

DataTaggingHookInputRecordsInnerElementsInner

DataTaggingHookResponse

A response from invoking a data tagging hook

DataTaggingHookResponseRecordsInner

DataTaggingHookResponseRecordsInner

DeleteTags

DeleteTags

Domain

Information about a domain

DomainAddReadContextRule200Response

DomainAddReadContextRule200Response

DomainAuthenticate

An object containing external credentials that can be transmuted into a domain identity token

DomainAuthenticateResponse

A domain identity token

DomainContactIssueVerifyRequest

Parameters to request new validation request

DomainControlLogEntry

Results for a domain control log query

DomainControlLogResults

The results for a query of the capsule access log

DomainFactList

A list of defined fact types in the domain

DomainHooksList

A list of available hooks in this domain

DomainHooksListHooksInner

DomainHooksListHooksInner

DomainIdentityAPIKeyPrincipalParams

Details for an API key principal

DomainIdentityEmailPrincipalParams

Details for an email principal

DomainIdentityHostedDomainPrincipalParams

Additional details for a hosted domain principal

DomainIdentityPrincipalDetails

DomainIdentityPrincipalDetails

DomainIdentityProviderDetails

DomainIdentityProviderDetails

DomainIdentityProviderInfo

Information about an identity provider. This may be an imported provider or a provider in this domain

DomainIdentityProviderList

A list of identity providers

DomainIdentityProviderPrincipalList

A list of principals in an identity provider

DomainIdentityProviderPrincipalParams

Details to create a domain identity principal

DomainIdentityProviderPrincipalType

Principal type supported by an identity provider

DomainIdentityProviderType

Type of the identity provider.

DomainInsertIdentityProviderPrincipal200Response

DomainInsertIdentityProviderPrincipal200Response

DomainInsertWriteContextRegexRule200Response

DomainInsertWriteContextRegexRule200Response

DomainPeerConfig

Configuration of a domain peer. If the import alias is absent, the domain ID, without the initial "dm-" prefix, will be used

DomainPeerList

Information about the domains that this domain is peered with

DomainPeerListPeersInner

DomainPeerListPeersInner

DomainPolicy

A domain's policy. These rules govern who can view, edit or use which parts of a domain's configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is 'deny'. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow.

DomainPolicyRule

A rule governing the domain's policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted.

DomainPrivateInfo

Private information about a domain

DomainPublicInfo

Public information about a domain

DomainResourceSummary

A list of the resources and permissions available

DomainResourceSummarySchemaInner

DomainResourceSummarySchemaInner

DomainSettings

Additional configuration options for a domain

DomainSettingsDisasterRecovery

DomainSettingsDisasterRecovery

DomainSettingsPatch

A JSON patch to apply to the domain settings

DomainStatus

Information about the status of the domain

DomainStatusNotificationsInner

DomainStatusNotificationsInner

DomainTagInfoResults

Ordered list of the top 100 tags.

Error

An internal error

Fact

A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)

FactList

A list of facts

FactPolicyRulesInner

FactPolicyRulesInner

FactPolicyRulesInnerArgumentsInner

FactPolicyRulesInnerArgumentsInner

FactTypeDefinition

A type definition (schema) for a fact

GCPServiceAccountKeyInfo

The GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations.

GoogleOAuthDomainIdentityProviderDetails

Detailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used.

HookInvocation

The name and version of a hook that has been invoked on a capsule.

InvalidRequestError

Returned when one of the identifiers or arguments in the request is invalid

JSONPatchRequestAdd

JSONPatchRequestAdd

JSONPatchRequestAddValue

The value to add.

JSONPatchRequestCopy

JSONPatchRequestCopy

JSONPatchRequestMove

JSONPatchRequestMove

JSONPatchRequestRemove

JSONPatchRequestRemove

JSONPatchRequestReplace

JSONPatchRequestReplace

JSONPatchRequestReplaceValue

The value to replace.

JSONPatchRequestTst

JSONPatchRequestTst

JSONPatchRequestTstValue

The value to test.

KeyInfos

Holds the required service account information for varying providers.

KeyInfosKeyInformation

KeyInfosKeyInformation

NewAccessLogEntry

An individual capsule data-plane log entry, in the form required when inserting a new record

NewAccessLogEntryReadInfo

information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.

NewCapabilityDefinition

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

NewDomain

Parameters when creating a domain

NewDomainResponse

Information returned from a successful domain create request

NewFact

A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)

NewFactTypeDefinition

A type definition (schema) for a fact being created

NewFactTypeDefinitionArgumentsInner

NewFactTypeDefinitionArgumentsInner

NewReadContextConfigRule

Information about what must be done to data when it is read from a capsule

PatchRequestInner

PatchRequestInner

PrincipalInfo

Detailed information about a principal

PrincipalSummary

PrincipalSummary

ReadContextConfigRule

Information about what must be done to data when it is read from a capsule

ReadContextDetails

Details about a read context

ReadContextList

A list of read contexts

ReadContextParameter

Declare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc).

ReadContextRequiredHook

ReadContextRequiredHook

ReadContextRuleFactsInner

ReadContextRuleFactsInner

ReadContextRuleFactsInnerArgumentsInner

ReadContextRuleFactsInnerArgumentsInner

ReadContextRuleMatchExpressionsInner

ReadContextRuleMatchExpressionsInner

ReadContextShortDetails

Abridged details about a read context

ResourceExhaustedError

Returned when the server is unable to process the request due to resource exhaustion or rate limiting

ResourceNotFoundError

Returned when interacting with a valid URL, but the request references an unknown resource

RootEncryptionKeyIDResponse

The newly created root encryption key's ID.

RootEncryptionKeyItem

RootEncryptionKeyItem

RootEncryptionKeyTestResponse

RootEncryptionKeyTestResponse

RotateKeyEncryptionKeyResponse

The results for a query of the capsule access log

StarredDomainList

StarredDomainList

Tag

Tag

TagMeta

TagMeta

TagSet

TagSet

TagSetSpanTagsInner

TagSetSpanTagsInner

TagSummary

TagSummary

TagSummaryElidedTagsInner

TagSummaryElidedTagsInner

TagSummaryUniqueTagsInner

TagSummaryUniqueTagsInner

TagTypeField

the type of this tag

UnauthorizedError

Returned when the server cannot authorize the request

UpsertSpanTagsRequest

UpsertSpanTagsRequest

VerifyContactResponse

Returned by successful contact email verification

WriteContextConfigInfo

Information about write context config rules

WriteContextConfigInfoRequiredHooksInner

WriteContextConfigInfoRequiredHooksInner

WriteContextDetails

Details about a write context

WriteContextList

A list of write contexts

WriteContextRegexRule

Regex classifier rule for a write context

WriteContextRegexTag

Tag descriptor for a write context regex rule

class antimatter.client.DefaultApi(api_client=None)#

NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech

Do not edit the class manually.

capsule_get_by_id(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.error.Error#

Get a Capsule by ID

This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.

Parameters:
  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

capsule_get_by_id_with_http_info(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.error.Error]#

Get a Capsule by ID

This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.

Parameters:
  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

capsule_get_by_id_without_preload_content(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a Capsule by ID

This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.

Parameters:
  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_access_log_entry(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Add a capsule audit log entry

Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_access_log_entry_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Add a capsule audit log entry

Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_access_log_entry_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Add a capsule audit log entry

Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_id_response.RootEncryptionKeyIDResponse#

Add a new external root encryption key.

Add a new external credentials that can be used as the domain’s root encryption key.

Parameters:
  • domain_id (str) – (required)

  • key_infos (KeyInfos) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_id_response.RootEncryptionKeyIDResponse]#

Add a new external root encryption key.

Add a new external credentials that can be used as the domain’s root encryption key.

Parameters:
  • domain_id (str) – (required)

  • key_infos (KeyInfos) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Add a new external root encryption key.

Add a new external credentials that can be used as the domain’s root encryption key.

Parameters:
  • domain_id (str) – (required)

  • key_infos (KeyInfos) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_new(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.new_domain_response.NewDomainResponse#

Add a new domain

Add a new domain with no default peer relationships.

Parameters:
  • new_domain (NewDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_new_with_http_info(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.new_domain_response.NewDomainResponse]#

Add a new domain

Add a new domain with no default peer relationships.

Parameters:
  • new_domain (NewDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_new_without_preload_content(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Add a new domain

Add a new domain with no default peer relationships.

Parameters:
  • new_domain (NewDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_add_read_context_rule200_response.DomainAddReadContextRule200Response#

Add a read context configuration rule

Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_add_read_context_rule200_response.DomainAddReadContextRule200Response]#

Add a read context configuration rule

Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_add_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Add a read context configuration rule

Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_authenticate(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_authenticate_response.DomainAuthenticateResponse#

Authenticate with a domain

Use an authentication method to obtain a domain ID token

Parameters:
  • domain_id (str) – (required)

  • domain_authenticate (DomainAuthenticate) – (required)

  • identity_provider_name (str) –

  • token_exchange (bool) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_authenticate_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_authenticate_response.DomainAuthenticateResponse]#

Authenticate with a domain

Use an authentication method to obtain a domain ID token

Parameters:
  • domain_id (str) – (required)

  • domain_authenticate (DomainAuthenticate) – (required)

  • identity_provider_name (str) –

  • token_exchange (bool) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_authenticate_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Authenticate with a domain

Use an authentication method to obtain a domain ID token

Parameters:
  • domain_id (str) – (required)

  • domain_authenticate (DomainAuthenticate) – (required)

  • identity_provider_name (str) –

  • token_exchange (bool) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_issue_verify(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Issue a new verification request

Issue a new verification request to a admin account associated with the domain that is currently in the pending state.

Parameters:
  • domain_id (str) – (required)

  • domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_issue_verify_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Issue a new verification request

Issue a new verification request to a admin account associated with the domain that is currently in the pending state.

Parameters:
  • domain_id (str) – (required)

  • domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_issue_verify_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Issue a new verification request

Issue a new verification request to a admin account associated with the domain that is currently in the pending state.

Parameters:
  • domain_id (str) – (required)

  • domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_verify(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.verify_contact_response.VerifyContactResponse#

Verify an admin account recently associated with a domain

Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.

Parameters:
  • domain_id (str) – (required)

  • token (str) – Security token issued with verification request (required)

  • address (str) – Email address to be tested against the supplied token (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_verify_with_http_info(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.verify_contact_response.VerifyContactResponse]#

Verify an admin account recently associated with a domain

Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.

Parameters:
  • domain_id (str) – (required)

  • token (str) – Security token issued with verification request (required)

  • address (str) – Email address to be tested against the supplied token (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_contact_verify_without_preload_content(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Verify an admin account recently associated with a domain

Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.

Parameters:
  • domain_id (str) – (required)

  • token (str) – Security token issued with verification request (required)

  • address (str) – Email address to be tested against the supplied token (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_capsule(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_create_response.CapsuleCreateResponse#

Create a capsule

Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.

Parameters:
  • domain_id (str) – (required)

  • write_context (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_create_response.CapsuleCreateResponse]#

Create a capsule

Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.

Parameters:
  • domain_id (str) – (required)

  • write_context (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create a capsule

Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.

Parameters:
  • domain_id (str) – (required)

  • write_context (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_peer_domain(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.new_domain_response.NewDomainResponse#

Create a peer domain

Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.

Parameters:
  • domain_id (str) – (required)

  • create_peer_domain (CreatePeerDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_peer_domain_with_http_info(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.new_domain_response.NewDomainResponse]#

Create a peer domain

Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.

Parameters:
  • domain_id (str) – (required)

  • create_peer_domain (CreatePeerDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_peer_domain_without_preload_content(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create a peer domain

Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.

Parameters:
  • domain_id (str) – (required)

  • create_peer_domain (CreatePeerDomain) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_policy_rule(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy_rule.DomainPolicyRule#

Create a domain policy rule

Create a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy_rule.DomainPolicyRule]#

Create a domain policy rule

Create a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_create_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create a domain policy rule

Create a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_data_tagging_hook_invoke(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.data_tagging_hook_response.DataTaggingHookResponse#

Invoke a hook

Invoke a hook that operates on data and returns tags

Parameters:
  • domain_id (str) – (required)

  • hook_name (str) – (required)

  • data_tagging_hook_input (DataTaggingHookInput) – (required)

  • write_context (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_data_tagging_hook_invoke_with_http_info(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.data_tagging_hook_response.DataTaggingHookResponse]#

Invoke a hook

Invoke a hook that operates on data and returns tags

Parameters:
  • domain_id (str) – (required)

  • hook_name (str) – (required)

  • data_tagging_hook_input (DataTaggingHookInput) – (required)

  • write_context (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_data_tagging_hook_invoke_without_preload_content(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Invoke a hook

Invoke a hook that operates on data and returns tags

Parameters:
  • domain_id (str) – (required)

  • hook_name (str) – (required)

  • data_tagging_hook_input (DataTaggingHookInput) – (required)

  • write_context (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a capability

Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a capability

Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a capability

Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capsule_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete capsule-level tags

Delete capsule-level tags

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • delete_tags (DeleteTags) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capsule_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete capsule-level tags

Delete capsule-level tags

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • delete_tags (DeleteTags) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_capsule_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete capsule-level tags

Delete capsule-level tags

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • delete_tags (DeleteTags) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete an external root encryption key by ID.

Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete an external root encryption key by ID.

Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete an external root encryption key by ID.

Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_by_id(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a fact

Delete a fact by ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be deleted. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_by_id_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a fact

Delete a fact by ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be deleted. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_by_id_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a fact

Delete a fact by ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be deleted. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a fact type

Deletes a fact type and all facts inside it

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • confirm (str) – the fact type again, to confirm you really want to delete it (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a fact type

Deletes a fact type and all facts inside it

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • confirm (str) – the fact type again, to confirm you really want to delete it (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a fact type

Deletes a fact type and all facts inside it

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • confirm (str) – the fact type again, to confirm you really want to delete it (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete an identity provider

Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete an identity provider

Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete an identity provider

Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete identity provider principal

Delete an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete identity provider principal

Delete an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete identity provider principal

Delete an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_peer(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a peer domain

Removes the peering relationship with the given domain

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a peer domain

Removes the peering relationship with the given domain

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a peer domain

Removes the peering relationship with the given domain

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_policy_rule(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a domain policy rule

Delete a domain policy rule by ID

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a domain policy rule

Delete a domain policy rule by ID

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a domain policy rule

Delete a domain policy rule by ID

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a read context

Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a read context

Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a read context

Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a read context configuration rule

Deletes a read context configuration rule by ID.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a read context configuration rule

Deletes a read context configuration rule by ID.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a read context configuration rule

Deletes a read context configuration rule by ID.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Delete a write context

Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Delete a write context

Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Delete a write context

Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context_regex_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

domain_delete_write_context_regex_rule

Delete a regex classifier rule for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context_regex_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

domain_delete_write_context_regex_rule

Delete a regex classifier rule for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_delete_write_context_regex_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

domain_delete_write_context_regex_rule

Delete a regex classifier rule for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_describe_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.write_context_details.WriteContextDetails#

Describe a write context

Returns a detailed description of a write context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_describe_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.write_context_details.WriteContextDetails]#

Describe a write context

Returns a detailed description of a write context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_describe_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Describe a write context

Returns a detailed description of a write context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_external_root_encryption_key_test(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_test_response.RootEncryptionKeyTestResponse#

Test the health of a root encryption key

Attempts to use a root encryption key to encrypt and decrypt, validating its availability

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_external_root_encryption_key_test_with_http_info(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_test_response.RootEncryptionKeyTestResponse]#

Test the health of a root encryption key

Attempts to use a root encryption key to encrypt and decrypt, validating its availability

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_external_root_encryption_key_test_without_preload_content(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Test the health of a root encryption key

Attempts to use a root encryption key to encrypt and decrypt, validating its availability

Parameters:
  • domain_id (str) – (required)

  • root_encryption_key_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_flush_encryption_keys(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Flush all encryption keys

Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available

Parameters:
  • domain_id (str) – (required)

  • body (object) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_flush_encryption_keys_with_http_info(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Flush all encryption keys

Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available

Parameters:
  • domain_id (str) – (required)

  • body (object) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_flush_encryption_keys_without_preload_content(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Flush all encryption keys

Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available

Parameters:
  • domain_id (str) – (required)

  • body (object) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_active_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem#

Get the active root encryption key’s information.

Return the details about the current active root encryption key used by the domain ID.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_active_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem]#

Get the active root encryption key’s information.

Return the details about the current active root encryption key used by the domain ID.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_active_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the active root encryption key’s information.

Return the details about the current active root encryption key used by the domain ID.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capabilities(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capability_definition_list.CapabilityDefinitionList#

Get the domain capabilities

Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capabilities_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capability_definition_list.CapabilityDefinitionList]#

Get the domain capabilities

Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capabilities_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain capabilities

Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capability_definition.CapabilityDefinition#

Get a single capability

Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capability_definition.CapabilityDefinition]#

Get a single capability

Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a single capability

Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capsule_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_info.CapsuleInfo#

Get capsule info

Get the summary information about this capsule

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capsule_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_info.CapsuleInfo]#

Get capsule info

Get the summary information about this capsule

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_capsule_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get capsule info

Get the summary information about this capsule

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_external_root_encryption_key_providers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.available_root_encryption_key_providers.AvailableRootEncryptionKeyProviders#

Returns a list of available root encryption key providers.

Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_external_root_encryption_key_providers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.available_root_encryption_key_providers.AvailableRootEncryptionKeyProviders]#

Returns a list of available root encryption key providers.

Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_external_root_encryption_key_providers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Returns a list of available root encryption key providers.

Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_by_id(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact.Fact#

Get a fact by ID

Returns the fact with the given ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be retrieved. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_by_id_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact.Fact]#

Get a fact by ID

Returns the fact with the given ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be retrieved. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_by_id_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a fact by ID

Returns the fact with the given ID

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • fact_id (str) – the ID for the fact to be retrieved. (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact_type_definition.FactTypeDefinition#

Get a fact type definition

Get the definition of the given fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact_type_definition.FactTypeDefinition]#

Get a fact type definition

Get the definition of the given fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a fact type definition

Get the definition of the given fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo#

Get an identity provider’s details

Retrieve detailed information and configuration of an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#

Get an identity provider’s details

Retrieve detailed information and configuration of an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get an identity provider’s details

Retrieve detailed information and configuration of an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.principal_info.PrincipalInfo#

Get identity provider principal details

Retrieve detailed information about an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.principal_info.PrincipalInfo]#

Get identity provider principal details

Retrieve detailed information about an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get identity provider principal details

Retrieve detailed information about an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principals(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_principal_list.DomainIdentityProviderPrincipalList#

Get an identity provider’s principals

Retrieve a list of principals for an identity provider

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principals_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_principal_list.DomainIdentityProviderPrincipalList]#

Get an identity provider’s principals

Retrieve a list of principals for an identity provider

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_identity_provider_principals_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get an identity provider’s principals

Retrieve a list of principals for an identity provider

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain.Domain#

Get a peer domain by nickname or alias

Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames

Parameters:
  • domain_id (str) – (required)

  • nickname (str) –

  • alias (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain.Domain]#

Get a peer domain by nickname or alias

Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames

Parameters:
  • domain_id (str) – (required)

  • nickname (str) –

  • alias (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a peer domain by nickname or alias

Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames

Parameters:
  • domain_id (str) – (required)

  • nickname (str) –

  • alias (str) –

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer_config(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_peer_config.DomainPeerConfig#

Get peer configuration

Get the configuration for this peer.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer_config_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_peer_config.DomainPeerConfig]#

Get peer configuration

Get the configuration for this peer.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_peer_config_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get peer configuration

Get the configuration for this peer.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_private_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_private_info.DomainPrivateInfo#

Get the summary info for a Domain

Returns a Domain’s summary information.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_private_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_private_info.DomainPrivateInfo]#

Get the summary info for a Domain

Returns a Domain’s summary information.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_private_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the summary info for a Domain

Returns a Domain’s summary information.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_public_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_public_info.DomainPublicInfo#

Get the public info for a Domain

Returns a Domain’s summary information. This endpoint does not require authorization

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_public_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_public_info.DomainPublicInfo]#

Get the public info for a Domain

Returns a Domain’s summary information. This endpoint does not require authorization

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_public_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the public info for a Domain

Returns a Domain’s summary information. This endpoint does not require authorization

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.read_context_details.ReadContextDetails#

Get a read context

Returns information about a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.read_context_details.ReadContextDetails]#

Get a read context

Returns information about a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a read context

Returns information about a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_settings(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_settings.DomainSettings#

Get the domain settings

Get the domain settings object

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_settings_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_settings.DomainSettings]#

Get the domain settings

Get the domain settings object

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_settings_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain settings

Get the domain settings object

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_status(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_status.DomainStatus#

Get the domain status

The domain status object contains important notifications for administrators of the domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_status_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_status.DomainStatus]#

Get the domain status

The domain status object contains important notifications for administrators of the domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_status_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain status

The domain status object contains important notifications for administrators of the domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_tag_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_tag_info_results.DomainTagInfoResults#

Get an ordered list of the top 100 tags.

Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_tag_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_tag_info_results.DomainTagInfoResults]#

Get an ordered list of the top 100 tags.

Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_tag_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get an ordered list of the top 100 tags.

Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_write_context_regex_rules(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) List[antimatter.client.models.write_context_regex_rule.WriteContextRegexRule]#

domain_get_write_context_regex_rules

Get a full listing of all regex rules for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_write_context_regex_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[List[antimatter.client.models.write_context_regex_rule.WriteContextRegexRule]]#

domain_get_write_context_regex_rules

Get a full listing of all regex rules for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_get_write_context_regex_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

domain_get_write_context_regex_rules

Get a full listing of all regex rules for the context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_insert_identity_provider_principal200_response.DomainInsertIdentityProviderPrincipal200Response#

Create a new principal for the provider

Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_insert_identity_provider_principal200_response.DomainInsertIdentityProviderPrincipal200Response]#

Create a new principal for the provider

Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create a new principal for the provider

Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_write_context_regex_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_insert_write_context_regex_rule200_response.DomainInsertWriteContextRegexRule200Response#

Insert a write context regex rule

Create a new regex rule for a write context.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_regex_rule (WriteContextRegexRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_write_context_regex_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_insert_write_context_regex_rule200_response.DomainInsertWriteContextRegexRule200Response]#

Insert a write context regex rule

Create a new regex rule for a write context.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_regex_rule (WriteContextRegexRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_insert_write_context_regex_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Insert a write context regex rule

Create a new regex rule for a write context.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_regex_rule (WriteContextRegexRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_capsules(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key  results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not  specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not  specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_list.CapsuleList#

Get capsule list

Get information about capsules

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.

  • sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.

  • start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.

  • ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_capsules_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key  results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not  specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not  specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_list.CapsuleList]#

Get capsule list

Get information about capsules

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.

  • sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.

  • start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.

  • ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_capsules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key  results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not  specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not  specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get capsule list

Get information about capsules

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.

  • sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.

  • start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.

  • ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) List[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem]#

List all external root encryption keys.

List all external root encryption keys for the domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[List[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem]]#

List all external root encryption keys.

List all external root encryption keys for the domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List all external root encryption keys.

List all external root encryption keys for the domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_fact_types(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_fact_list.DomainFactList#

List the domain’s fact types

Get a list of the registered fact types in this domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_fact_types_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_fact_list.DomainFactList]#

List the domain’s fact types

Get a list of the registered fact types in this domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_fact_types_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List the domain’s fact types

Get a list of the registered fact types in this domain

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_facts(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact_list.FactList#

Get facts for a type

Get the facts corresponding to a fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_facts_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact_list.FactList]#

Get facts for a type

Get the facts corresponding to a fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_facts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get facts for a type

Get the facts corresponding to a fact type

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_hooks(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_hooks_list.DomainHooksList#

Lists available hooks

Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_hooks_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_hooks_list.DomainHooksList]#

Lists available hooks

Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_hooks_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Lists available hooks

Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_identity_providers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_list.DomainIdentityProviderList#

Get a summary of the domain’s Identity Providers

Retrieve the domain’s identity providers and a brief overview of their configuration

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_identity_providers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_list.DomainIdentityProviderList]#

Get a summary of the domain’s Identity Providers

Retrieve the domain’s identity providers and a brief overview of their configuration

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_identity_providers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a summary of the domain’s Identity Providers

Retrieve the domain’s identity providers and a brief overview of their configuration

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_peers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_peer_list.DomainPeerList#

List domain peers

Returns a list of this domains peers

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_peers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_peer_list.DomainPeerList]#

List domain peers

Returns a list of this domains peers

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_peers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List domain peers

Returns a list of this domains peers

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_policy_rules(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy.DomainPolicy#

Get the domain policy rules

Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_policy_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy.DomainPolicy]#

Get the domain policy rules

Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_policy_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain policy rules

Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_read_contexts(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.read_context_list.ReadContextList#

List domain read contexts

List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_read_contexts_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.read_context_list.ReadContextList]#

List domain read contexts

List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_read_contexts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List domain read contexts

List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_resources(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_resource_summary.DomainResourceSummary#

Get a summary of access control resource paths

Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_resources_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_resource_summary.DomainResourceSummary]#

Get a summary of access control resource paths

Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_resources_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get a summary of access control resource paths

Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_write_contexts(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.write_context_list.WriteContextList#

List domain write contexts

List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_write_contexts_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.write_context_list.WriteContextList]#

List domain write contexts

List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_list_write_contexts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List domain write contexts

List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_open_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_open_response.CapsuleOpenResponse#

Open a capsule for reading

Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • read_context (str) – (required)

  • capsule_open_request (CapsuleOpenRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_open_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_open_response.CapsuleOpenResponse]#

Open a capsule for reading

Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • read_context (str) – (required)

  • capsule_open_request (CapsuleOpenRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_open_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Open a capsule for reading

Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • read_context (str) – (required)

  • capsule_open_request (CapsuleOpenRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_patch_settings(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_settings.DomainSettings#

Update the domain settings

Applies the given patch to the domain settings. The user must have permissions on all resources the patch references

Parameters:
  • domain_id (str) – (required)

  • domain_settings_patch (DomainSettingsPatch) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_patch_settings_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_settings.DomainSettings]#

Update the domain settings

Applies the given patch to the domain settings. The user must have permissions on all resources the patch references

Parameters:
  • domain_id (str) – (required)

  • domain_settings_patch (DomainSettingsPatch) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_patch_settings_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update the domain settings

Applies the given patch to the domain settings. The user must have permissions on all resources the patch references

Parameters:
  • domain_id (str) – (required)

  • domain_settings_patch (DomainSettingsPatch) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_policy_flush(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Flush the policy cache

Flush the policy cache so that changes to permissions take effect

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_policy_flush_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Flush the policy cache

Flush the policy cache so that changes to permissions take effect

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_policy_flush_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Flush the policy cache

Flush the policy cache so that changes to permissions take effect

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Create or update a capability

Create or update a capability. If you want to return an error if the capability already existed, set createonly=true

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • new_capability_definition (NewCapabilityDefinition) – (required)

  • createonly (bool) – return an error if the capability already existed

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Create or update a capability

Create or update a capability. If you want to return an error if the capability already existed, set createonly=true

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • new_capability_definition (NewCapabilityDefinition) – (required)

  • createonly (bool) – return an error if the capability already existed

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create or update a capability

Create or update a capability. If you want to return an error if the capability already existed, set createonly=true

Parameters:
  • domain_id (str) – (required)

  • capability (str) – the name for this capability, like “admin” (required)

  • new_capability_definition (NewCapabilityDefinition) – (required)

  • createonly (bool) – return an error if the capability already existed

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Create a fact type

Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact_type_definition (NewFactTypeDefinition) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Create a fact type

Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact_type_definition (NewFactTypeDefinition) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_put_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create a fact type

Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact_type_definition (NewFactTypeDefinition) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.access_log_results.AccessLogResults#

Get the domain data-plane audit log

Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.access_log_results.AccessLogResults]#

Get the domain data-plane audit log

Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain data-plane audit log

Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log_single_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.access_log_results.AccessLogResults#

Get the access log for a single capsule

Query the data-plane access log for this capsule. Results are returned in reverse chronological order.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log_single_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.access_log_results.AccessLogResults]#

Get the access log for a single capsule

Query the data-plane access log for this capsule. Results are returned in reverse chronological order.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_access_log_single_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the access log for a single capsule

Query the data-plane access log for this capsule. Results are returned in reverse chronological order.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.

  • operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.

  • allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.

  • redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_control_log(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that  contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_control_log_results.DomainControlLogResults#

Get the domain control-plane audit log

Query the domain control-plane audit log. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_control_log_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that  contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_control_log_results.DomainControlLogResults]#

Get the domain control-plane audit log

Query the domain control-plane audit log. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_query_control_log_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that  contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Get the domain control-plane audit log

Query the domain control-plane audit log. Results are returned in reverse chronological order

Parameters:
  • domain_id (str) – (required)

  • start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.

  • end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.

  • num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.

  • start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.

  • session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.

  • url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.

  • description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_renumber_policy_rules(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy.DomainPolicy#

Re-assign rule numbers

Re-assign rule priority numbers to integer multiples of 10

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_renumber_policy_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy.DomainPolicy]#

Re-assign rule numbers

Re-assign rule priority numbers to integer multiples of 10

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_renumber_policy_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Re-assign rule numbers

Re-assign rule priority numbers to integer multiples of 10

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_rotate_root_encryption_keys(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.rotate_key_encryption_key_response.RotateKeyEncryptionKeyResponse#

Re-encrypt key encryption keys with active root encryption key.

Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.

Parameters:
  • domain_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_rotate_root_encryption_keys_with_http_info(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.rotate_key_encryption_key_response.RotateKeyEncryptionKeyResponse]#

Re-encrypt key encryption keys with active root encryption key.

Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.

Parameters:
  • domain_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_rotate_root_encryption_keys_without_preload_content(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Re-encrypt key encryption keys with active root encryption key.

Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.

Parameters:
  • domain_id (str) – (required)

  • body (object) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_seal_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Seal a capsule

Seal this capsule, if it’s unsealed. Requires capsule create token

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • capsule_seal_request (CapsuleSealRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_seal_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Seal a capsule

Seal this capsule, if it’s unsealed. Requires capsule create token

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • capsule_seal_request (CapsuleSealRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_seal_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Seal a capsule

Seal this capsule, if it’s unsealed. Requires capsule create token

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • capsule_seal_request (CapsuleSealRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_set_active_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Set the root encryption key ID that should be used.

This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.

Parameters:
  • domain_id (str) – (required)

  • active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_set_active_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Set the root encryption key ID that should be used.

This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.

Parameters:
  • domain_id (str) – (required)

  • active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_set_active_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Set the root encryption key ID that should be used.

This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.

Parameters:
  • domain_id (str) – (required)

  • active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update identity provider principal capabilities

Update capabilities for an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • capability_list (CapabilityList) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update identity provider principal capabilities

Update capabilities for an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • capability_list (CapabilityList) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update identity provider principal capabilities

Update capabilities for an identity provider principal.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • principal_id (str) – (required)

  • capability_list (CapabilityList) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_peer(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update peer configuration

Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • domain_peer_config (DomainPeerConfig) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update peer configuration

Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • domain_peer_config (DomainPeerConfig) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update peer configuration

Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.

Parameters:
  • domain_id (str) – (required)

  • peer_domain_id (str) – (required)

  • domain_peer_config (DomainPeerConfig) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_policy_rule(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update a domain policy rule

Update a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update a domain policy rule

Update a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update a domain policy rule

Update a domain policy rule

Parameters:
  • domain_id (str) – (required)

  • rule_id (str) – (required)

  • domain_policy_rule (DomainPolicyRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update a read context configuration rule

Update a read context configuration rule. The rule must already exist

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update a read context configuration rule

Update a read context configuration rule. The rule must already exist

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_update_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update a read context configuration rule

Update a read context configuration rule. The rule must already exist

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • rule_id (str) – (required)

  • new_read_context_config_rule (NewReadContextConfigRule) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_capsule_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Upsert capsule-scope tags

Upsert capsule-level tags. This is permitted even after a capsule is sealed.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • tag (List[Tag]) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_capsule_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Upsert capsule-scope tags

Upsert capsule-level tags. This is permitted even after a capsule is sealed.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • tag (List[Tag]) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_capsule_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Upsert capsule-scope tags

Upsert capsule-level tags. This is permitted even after a capsule is sealed.

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • tag (List[Tag]) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_fact(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact.Fact#

Upsert a fact

Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact (NewFact) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_fact_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact.Fact]#

Upsert a fact

Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact (NewFact) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_fact_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Upsert a fact

Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op

Parameters:
  • domain_id (str) – (required)

  • fact_type (str) – the “type name” for this fact, like “has_role” (required)

  • new_fact (NewFact) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo#

Create/Update an identity provider

Create or configure an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_details (DomainIdentityProviderDetails) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#

Create/Update an identity provider

Create or configure an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_details (DomainIdentityProviderDetails) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Create/Update an identity provider

Create or configure an identity provider.

Parameters:
  • domain_id (str) – (required)

  • identity_provider_name (str) – (required)

  • domain_identity_provider_details (DomainIdentityProviderDetails) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update or create a read context

Update or create a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_read_context (AddReadContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update or create a read context

Update or create a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_read_context (AddReadContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update or create a read context

Update or create a read context

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_read_context (AddReadContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_span_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Upsert span-scope tags

Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • upsert_span_tags_request (UpsertSpanTagsRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_span_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Upsert span-scope tags

Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • upsert_span_tags_request (UpsertSpanTagsRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_span_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Upsert span-scope tags

Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent

Parameters:
  • domain_id (str) – (required)

  • capsule_id (str) – (required)

  • upsert_span_tags_request (UpsertSpanTagsRequest) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Upsert a write context

Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_write_context (AddWriteContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Upsert a write context

Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_write_context (AddWriteContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Upsert a write context

Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • add_write_context (AddWriteContext) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context_configuration(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Update a write context configuration

Update a write context configuration. The write context must already exist.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_config_info (WriteContextConfigInfo) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context_configuration_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Update a write context configuration

Update a write context configuration. The write context must already exist.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_config_info (WriteContextConfigInfo) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

domain_upsert_write_context_configuration_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Update a write context configuration

Update a write context configuration. The write context must already exist.

Parameters:
  • domain_id (str) – (required)

  • context_name (str) – (required)

  • write_context_config_info (WriteContextConfigInfo) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_add(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Adds to starred domains

Adds the domain to the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_add_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Adds to starred domains

Adds the domain to the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_add_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Adds to starred domains

Adds the domain to the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_list(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.starred_domain_list.StarredDomainList#

List the user’s starred domains

Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.

Parameters:
  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_list_with_http_info(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.starred_domain_list.StarredDomainList]#

List the user’s starred domains

Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.

Parameters:
  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_list_without_preload_content(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

List the user’s starred domains

Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.

Parameters:
  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_remove(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None#

Removes from starred domains

Removes the domain from the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_remove_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None]#

Removes from starred domains

Removes the domain from the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

starred_domain_remove_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType#

Removes from starred domains

Removes the domain from the list of starred domains for the user.

Parameters:
  • domain_id (str) – (required)

  • _request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.

  • _request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

  • _content_type (str, Optional) – force content-type for the request.

  • _headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.

  • _host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.

Returns:

Returns the result object.

class antimatter.client.ApiResponse(/, **data: Any)#

Bases: pydantic.BaseModel, Generic[T]

API response object

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

status_code: pydantic.StrictInt#
headers: Dict[pydantic.StrictStr, pydantic.StrictStr] | None#
data: T#
raw_data: pydantic.StrictBytes#
model_config#
classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ApiClient(configuration=None, header_name=None, header_value=None, cookie=None)#

Generic API client for OpenAPI client library builds.

OpenAPI generic API client. This client handles the client- server communication, and is invariant across implementations. Specifics of the methods and models for each application are generated from the OpenAPI templates.

Parameters:
  • configuration – .Configuration object for this client

  • header_name – a header to pass when making calls to the API.

  • header_value – a header value to pass when making calls to the API.

  • cookie – a cookie to include in the header when making calls to the API

property user_agent#

User agent for this API client

PRIMITIVE_TYPES = ()#
NATIVE_TYPES_MAPPING#
set_default_header(header_name, header_value)#
classmethod get_default()#

Return new instance of ApiClient.

This method returns newly created, based on default constructor, object of ApiClient class or returns a copy of default ApiClient.

Returns:

The ApiClient object.

classmethod set_default(default)#

Set default instance of ApiClient.

It stores default ApiClient.

Parameters:

default – object of ApiClient.

param_serialize(method, resource_path, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, auth_settings=None, collection_formats=None, _host=None, _request_auth=None) Tuple#

Builds the HTTP request params needed by the request. :param method: Method to call. :param resource_path: Path to method endpoint. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be

placed in the request header.

Parameters:
  • body – Request body.

  • dict (files) – Request post form parameters, for application/x-www-form-urlencoded, multipart/form-data.

  • list (auth_settings) – Auth Settings names for the request.

  • dict – key -> filename, value -> filepath, for multipart/form-data.

  • collection_formats – dict of collection formats for path, query, header, and post parameters.

  • _request_auth – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.

Returns:

tuple of form (path, http_method, query_params, header_params, body, post_params, files)

call_api(method, url, header_params=None, body=None, post_params=None, _request_timeout=None) antimatter.client.rest.RESTResponse#

Makes the HTTP request (synchronous) :param method: Method to call. :param url: Path to method endpoint. :param header_params: Header parameters to be

placed in the request header.

Parameters:
  • body – Request body.

  • dict (post_params) – Request post form parameters, for application/x-www-form-urlencoded, multipart/form-data.

  • _request_timeout – timeout setting for this request.

Returns:

RESTResponse

response_deserialize(response_data: antimatter.client.rest.RESTResponse = None, response_types_map=None) antimatter.client.api_response.ApiResponse#

Deserializes response into an object. :param response_data: RESTResponse object to be deserialized. :param response_types_map: dict of response types. :return: ApiResponse

sanitize_for_serialization(obj)#

Builds a JSON POST object.

If obj is None, return None. If obj is str, int, long, float, bool, return directly. If obj is datetime.datetime, datetime.date

convert to string in iso8601 format.

If obj is list, sanitize each element in the list. If obj is dict, return the dict. If obj is OpenAPI model, return the properties dict.

Parameters:

obj – The data to serialize.

Returns:

The serialized form of data.

deserialize(response_text, response_type)#

Deserializes response into an object.

Parameters:
  • response – RESTResponse object to be deserialized.

  • response_type – class literal for deserialized object, or string of class name.

Returns:

deserialized object.

parameters_to_tuples(params, collection_formats)#

Get parameters as list of tuples, formatting collections.

Parameters:
  • params – Parameters as dict or list of two-tuples

  • collection_formats (dict) – Parameter collection formats

Returns:

Parameters as list of tuples, collections formatted

parameters_to_url_query(params, collection_formats)#

Get parameters as list of tuples, formatting collections.

Parameters:
  • params – Parameters as dict or list of two-tuples

  • collection_formats (dict) – Parameter collection formats

Returns:

URL query string (e.g. a=Hello%20World&b=123)

files_parameters(files=None)#

Builds form parameters.

Parameters:

files – File parameters.

Returns:

Form parameters with files.

select_header_accept(accepts: List[str]) str | None#

Returns Accept based on an array of accepts provided.

Parameters:

accepts – List of headers.

Returns:

Accept (e.g. application/json).

select_header_content_type(content_types)#

Returns Content-Type based on an array of content_types provided.

Parameters:

content_types – List of content-types.

Returns:

Content-Type (e.g. application/json).

update_params_for_auth(headers, queries, auth_settings, resource_path, method, body, request_auth=None) None#

Updates header and query params based on authentication setting.

Parameters:
  • headers – Header parameters dict to be updated.

  • queries – Query parameters tuple list to be updated.

  • auth_settings – Authentication setting identifiers list.

Resource_path:

A string representation of the HTTP request resource path.

Method:

A string representation of the HTTP request method.

Body:

A object representing the body of the HTTP request.

The object type is the return value of sanitize_for_serialization(). :param request_auth: if set, the provided settings will

override the token in the configuration.

class antimatter.client.Configuration(host=None, api_key=None, api_key_prefix=None, username=None, password=None, access_token=None, server_index=None, server_variables=None, server_operation_index=None, server_operation_variables=None, ssl_ca_cert=None)#

This class contains various settings of the API client.

Parameters:
  • host – Base url.

  • api_key – Dict to store API key(s). Each entry in the dict specifies an API key. The dict key is the name of the security scheme in the OAS specification. The dict value is the API key secret.

  • api_key_prefix – Dict to store API prefix (e.g. Bearer). The dict key is the name of the security scheme in the OAS specification. The dict value is an API key prefix when generating the auth data.

  • username – Username for HTTP basic authentication.

  • password – Password for HTTP basic authentication.

  • access_token – Access token.

  • server_index – Index to servers configuration.

  • server_variables – Mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before.

  • server_operation_index – Mapping from operation ID to an index to server configuration.

  • server_operation_variables – Mapping from operation ID to a mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before.

  • ssl_ca_cert – str - the path to a file of concatenated CA certificates in PEM format.

Example:

property logger_file#

The logger file.

If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler.

Parameters:

value – The logger_file path.

Type:

str

property debug#

Debug status

Parameters:

value – The debug status, True or False.

Type:

bool

property logger_format#

The logger format.

The logger_formatter will be updated when sets logger_format.

Parameters:

value – The format string.

Type:

str

property host#

Return generated host.

server_operation_index#

Default server index

server_operation_variables#

Default server variables

temp_folder_path#

Temp file folder for downloading files

refresh_api_key_hook#

function hook to refresh API key if expired

username#

Username for HTTP basic authentication

password#

Password for HTTP basic authentication

access_token#

Access token

logger#

Logging Settings

logger_format = '%(asctime)s %(levelname)s %(message)s'#

Log format

logger_stream_handler#

Log stream handler

logger_file_handler#

Log file handler

logger_file#

Debug file location

debug = False#

Debug switch

verify_ssl = True#

SSL/TLS verification Set this to false to skip verifying SSL certificate when calling API from https server.

ssl_ca_cert#

Set this to customize the certificate file to verify the peer.

cert_file#

client certificate file

key_file#

client key file

assert_hostname#

Set this to True/False to enable/disable SSL hostname verification.

tls_server_name#

SSL/TLS Server Name Indication (SNI) Set this to the SNI value expected by the server.

connection_pool_maxsize#

urllib3 connection pool’s maximum number of connections saved per pool. urllib3 uses 1 connection as default value, but this is not the best value when you are making a lot of possibly parallel requests to the same host, which is often the case here. cpu_count * 5 is used as default value to increase performance.

proxy#

Proxy URL

proxy_headers#

Proxy headers

safe_chars_for_path_param = ''#

Safe chars for path_param

retries#

Adding retries to override urllib3 default value 3

socket_options#

Options to pass down to the underlying urllib3 socket

datetime_format = '%Y-%m-%dT%H:%M:%SZ'#

datetime format

date_format = '%Y-%m-%d'#

date format

classmethod set_default(default)#

Set default instance of configuration.

It stores default configuration, which can be returned by get_default_copy method.

Parameters:

default – object of Configuration

classmethod get_default_copy()#

Deprecated. Please use get_default instead.

Deprecated. Please use get_default instead.

Returns:

The configuration object.

classmethod get_default()#

Return the default configuration.

This method returns newly created, based on default constructor, object of Configuration class or returns a copy of default configuration.

Returns:

The configuration object.

get_api_key_with_prefix(identifier, alias=None)#

Gets API key (with prefix if set).

Parameters:
  • identifier – The identifier of apiKey.

  • alias – The alternative identifier of apiKey.

Returns:

The token for api key authentication.

get_basic_auth_token()#

Gets HTTP basic authentication header (string).

Returns:

The token for basic HTTP authentication.

auth_settings()#

Gets Auth Settings dict for api client.

Returns:

The Auth Settings information dict.

to_debug_report()#

Gets the essential information for debugging.

Returns:

The report for debugging.

get_host_settings()#

Gets an array of host settings

Returns:

An array of host settings

get_host_from_settings(index, variables=None, servers=None)#

Gets host URL based on the index and variables :param index: array index of the host settings :param variables: hash of variable and the corresponding value :param servers: an array of host settings or None :return: URL based on host settings

exception antimatter.client.OpenApiException#

Bases: Exception

The base exception class for all OpenAPIExceptions

class args#
add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception antimatter.client.ApiTypeError(msg, path_to_item=None, valid_classes=None, key_type=None)#

Bases: OpenApiException, TypeError

The base exception class for all OpenAPIExceptions

class args#
add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception antimatter.client.ApiValueError(msg, path_to_item=None)#

Bases: OpenApiException, ValueError

The base exception class for all OpenAPIExceptions

class args#
add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception antimatter.client.ApiKeyError(msg, path_to_item=None)#

Bases: OpenApiException, KeyError

The base exception class for all OpenAPIExceptions

class args#
add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception antimatter.client.ApiAttributeError(msg, path_to_item=None)#

Bases: OpenApiException, AttributeError

The base exception class for all OpenAPIExceptions

class args#
class name#

attribute name

class obj#

object

add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception antimatter.client.ApiException(status=None, reason=None, http_resp=None, *, body: str | None = None, data: Any | None = None)#

Bases: OpenApiException

The base exception class for all OpenAPIExceptions

class args#
classmethod from_response(*, http_resp, body: str | None, data: Any | None) typing_extensions.Self#
add_note()#

Exception.add_note(note) – add a note to the exception

with_traceback()#

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class antimatter.client.APIKeyDomainIdentityProviderDetails(/, **data: Any)#

Bases: pydantic.BaseModel

Detailed information about an API key identity provider

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

type: pydantic.StrictStr#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of APIKeyDomainIdentityProviderDetails from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of APIKeyDomainIdentityProviderDetails from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AWSServiceAccountKeyInfo(/, **data: Any)#

Bases: pydantic.BaseModel

The AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

access_key_id: pydantic.StrictStr#
secret_access_key: pydantic.StrictStr#
key_arn: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AWSServiceAccountKeyInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AWSServiceAccountKeyInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AccessLogEntry(/, **data: Any)#

Bases: pydantic.BaseModel

An individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in)

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
time: datetime.datetime#
domain: typing_extensions.Annotated[str, Field(strict=True)]#
capsule: typing_extensions.Annotated[str, Field(strict=True)]#
operation: pydantic.StrictStr#
session: typing_extensions.Annotated[str, Field(strict=True)]#
location: pydantic.StrictStr | None#
create_info: antimatter.client.models.access_log_entry_create_info.AccessLogEntryCreateInfo | None#
open_info: antimatter.client.models.access_log_entry_open_info.AccessLogEntryOpenInfo | None#
read_info: antimatter.client.models.access_log_entry_read_info.AccessLogEntryReadInfo | None#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

domain_validate_regular_expression(value)#

Validates the regular expression

capsule_validate_regular_expression(value)#

Validates the regular expression

operation_validate_enum(value)#

Validates the enum

session_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AccessLogEntry from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AccessLogEntry from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AccessLogEntryCreateInfo(/, **data: Any)#

Bases: pydantic.BaseModel

information available if the operation is of type “create”.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

write_context: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
write_context_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AccessLogEntryCreateInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AccessLogEntryCreateInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AccessLogEntryOpenInfo(/, **data: Any)#

Bases: pydantic.BaseModel

information available if the operation is of type “open”.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

read_context: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
read_context_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AccessLogEntryOpenInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AccessLogEntryOpenInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AccessLogEntryReadInfo(/, **data: Any)#

Bases: pydantic.BaseModel

information available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

parameters: Dict[str, pydantic.StrictStr]#
read_context: typing_extensions.Annotated[str, Field(strict=True)]#
allowed_tags: antimatter.client.models.tag_summary.TagSummary#
redacted_tags: antimatter.client.models.tag_summary.TagSummary#
tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
returned_records: pydantic.StrictInt#
filtered_records: pydantic.StrictInt#
model_config#
read_context_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AccessLogEntryReadInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AccessLogEntryReadInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AccessLogResults(/, **data: Any)#

Bases: pydantic.BaseModel

The results for a query of the capsule access log

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

results: List[antimatter.client.models.access_log_entry.AccessLogEntry]#
has_more: pydantic.StrictBool#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AccessLogResults from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AccessLogResults from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ActiveRootEncryptionKeyID(/, **data: Any)#

Bases: pydantic.BaseModel

The stored key ID to use as the active root encryption key.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

key_id: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
key_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ActiveRootEncryptionKeyID from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ActiveRootEncryptionKeyID from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AddCapsuleLogEntryRequest(/, **data: Any)#

Bases: pydantic.BaseModel

A request to add a capsule log entry

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
entry: antimatter.client.models.new_access_log_entry.NewAccessLogEntry#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AddCapsuleLogEntryRequest from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AddCapsuleLogEntryRequest from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AddReadContext(/, **data: Any)#

Bases: pydantic.BaseModel

A request to add read contexts

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
disable_read_logging: pydantic.StrictBool | None#
key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AddReadContext from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AddReadContext from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AddWriteContext(/, **data: Any)#

Bases: pydantic.BaseModel

Information for adding/updating a write context

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
config: antimatter.client.models.write_context_config_info.WriteContextConfigInfo#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AddWriteContext from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AddWriteContext from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AntimatterDelegatedAWSKeyInfo(/, **data: Any)#

Bases: pydantic.BaseModel

The details required to use an AWS KMS root encryption key that has been delegated to Antimatter’s AWS account. This will use Antimatter’s service account during set up of the AWS client.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

key_arn: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AntimatterDelegatedAWSKeyInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AntimatterDelegatedAWSKeyInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AvailableDelegatedRootEncryptionKeyProvider(/, **data: Any)#

Bases: pydantic.BaseModel

AvailableDelegatedRootEncryptionKeyProvider

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: pydantic.StrictStr#
short_name: pydantic.StrictStr#
description: pydantic.StrictStr#
account_details: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AvailableRootEncryptionKeyProviders(/, **data: Any)#

Bases: pydantic.BaseModel

AvailableRootEncryptionKeyProviders

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

providers: List[antimatter.client.models.available_root_encryption_key_providers_providers_inner.AvailableRootEncryptionKeyProvidersProvidersInner] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AvailableRootEncryptionKeyProviders from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AvailableRootEncryptionKeyProviders from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AvailableRootEncryptionKeyProvidersProvidersInner(*args, **kwargs)#

Bases: pydantic.BaseModel

AvailableRootEncryptionKeyProvidersProvidersInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | None#
oneof_schema_2_validator: antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
actual_instance: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
one_of_schemas: List[str]#
model_config#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.AvailableServiceAccountRootEncryptionKeyProvider(/, **data: Any)#

Bases: pydantic.BaseModel

AvailableServiceAccountRootEncryptionKeyProvider

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: pydantic.StrictStr#
short_name: pydantic.StrictStr#
description: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.Capability(/, **data: Any)#

Bases: pydantic.BaseModel

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of Capability from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of Capability from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapabilityDefinition(/, **data: Any)#

Bases: pydantic.BaseModel

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
unary: pydantic.StrictBool#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapabilityDefinition from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapabilityDefinition from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapabilityDefinitionList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of capability definitions

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

capabilities: List[antimatter.client.models.capability_definition.CapabilityDefinition]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapabilityDefinitionList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapabilityDefinitionList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapabilityList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of capabilities

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

capabilities: List[antimatter.client.models.capability.Capability]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapabilityList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapabilityList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapabilityRule(/, **data: Any)#

Bases: pydantic.BaseModel

A rule that refers to a domain identity capability. These rules are ANDed together

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

match_expressions: List[antimatter.client.models.capability_rule_match_expressions_inner.CapabilityRuleMatchExpressionsInner] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapabilityRule from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapabilityRule from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapabilityRuleMatchExpressionsInner(/, **data: Any)#

Bases: pydantic.BaseModel

CapabilityRuleMatchExpressionsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
operator: pydantic.StrictStr#
values: List[pydantic.StrictStr]#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

operator_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapabilityRuleMatchExpressionsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapabilityRuleMatchExpressionsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleCreateResponse(/, **data: Any)#

Bases: pydantic.BaseModel

The response for the creation of a new capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
data_key: pydantic.StrictBytes | pydantic.StrictStr#
encrypted_data_key: pydantic.StrictBytes | pydantic.StrictStr#
key_encryption_key_id: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
write_context_configuration: antimatter.client.models.write_context_config_info.WriteContextConfigInfo#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleCreateResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleCreateResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleInfo(/, **data: Any)#

Bases: pydantic.BaseModel

A summary of the capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
domain: typing_extensions.Annotated[str, Field(strict=True)]#
capsule_tags: List[antimatter.client.models.tag.Tag]#
span_tags: antimatter.client.models.tag_summary.TagSummary#
size: pydantic.StrictInt#
created: datetime.datetime#
page_key: pydantic.StrictStr | None#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

domain_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleList(/, **data: Any)#

Bases: pydantic.BaseModel

List of capsules

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

results: List[antimatter.client.models.capsule_info.CapsuleInfo]#
has_more: pydantic.StrictBool#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleOpenRequest(/, **data: Any)#

Bases: pydantic.BaseModel

A request to open (decrypt) a capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

encrypted_dek: pydantic.StrictBytes | pydantic.StrictStr#
key_id: pydantic.StrictInt#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleOpenRequest from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleOpenRequest from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleOpenResponse(/, **data: Any)#

Bases: pydantic.BaseModel

Contains key material for a capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

decryption_key: pydantic.StrictBytes | pydantic.StrictStr#
read_context_configuration: antimatter.client.models.capsule_open_response_read_context_configuration.CapsuleOpenResponseReadContextConfiguration#
open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
capsule_tags: List[antimatter.client.models.tag.Tag]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleOpenResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleOpenResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleOpenResponseReadContextConfiguration(/, **data: Any)#

Bases: pydantic.BaseModel

the material required for enacting read context configuration (e.g. wasm stuff)

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

disable_read_logging: pydantic.StrictBool | None#
key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
policy_assembly: pydantic.StrictBytes | pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleOpenResponseReadContextConfiguration from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleOpenResponseReadContextConfiguration from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CapsuleSealRequest(/, **data: Any)#

Bases: pydantic.BaseModel

Information applied when sealing a capsule (marking it as complete)

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

capsule_tags: List[antimatter.client.models.tag.Tag]#
span_tags: antimatter.client.models.tag_summary.TagSummary#
size: pydantic.StrictInt#
create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CapsuleSealRequest from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CapsuleSealRequest from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ConflictError(/, **data: Any)#

Bases: pydantic.BaseModel

Returned when attempting to delete a resource that is still in use by other resources

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

resource_type: pydantic.StrictStr#
identifier: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ConflictError from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ConflictError from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.CreatePeerDomain(/, **data: Any)#

Bases: pydantic.BaseModel

Configuration options for creating a new subdomain.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
import_alias_for_parent: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
import_alias_for_child: typing_extensions.Annotated[str, Field(strict=True)]#
display_name_for_parent: Optional[typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]]#
display_name_for_child: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
model_config#
import_alias_for_parent_validate_regular_expression(value)#

Validates the regular expression

import_alias_for_child_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of CreatePeerDomain from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of CreatePeerDomain from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DataTaggingHookInput(/, **data: Any)#

Bases: pydantic.BaseModel

A request to classify PII in a batch of records

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

records: List[antimatter.client.models.data_tagging_hook_input_records_inner.DataTaggingHookInputRecordsInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DataTaggingHookInput from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DataTaggingHookInput from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DataTaggingHookInputRecordsInner(/, **data: Any)#

Bases: pydantic.BaseModel

DataTaggingHookInputRecordsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

elements: List[antimatter.client.models.data_tagging_hook_input_records_inner_elements_inner.DataTaggingHookInputRecordsInnerElementsInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DataTaggingHookInputRecordsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DataTaggingHookInputRecordsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DataTaggingHookInputRecordsInnerElementsInner(/, **data: Any)#

Bases: pydantic.BaseModel

DataTaggingHookInputRecordsInnerElementsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

content: pydantic.StrictStr#
path: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DataTaggingHookResponse(/, **data: Any)#

Bases: pydantic.BaseModel

A response from invoking a data tagging hook

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

version: typing_extensions.Annotated[str, Field(strict=True)]#
records: List[antimatter.client.models.data_tagging_hook_response_records_inner.DataTaggingHookResponseRecordsInner]#
model_config#
version_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DataTaggingHookResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DataTaggingHookResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DataTaggingHookResponseRecordsInner(/, **data: Any)#

Bases: pydantic.BaseModel

DataTaggingHookResponseRecordsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

elements: List[antimatter.client.models.tag_set.TagSet]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DataTaggingHookResponseRecordsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DataTaggingHookResponseRecordsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DeleteTags(/, **data: Any)#

Bases: pydantic.BaseModel

DeleteTags

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

names: List[pydantic.StrictStr] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DeleteTags from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DeleteTags from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.Domain(/, **data: Any)#

Bases: pydantic.BaseModel

Information about a domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of Domain from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of Domain from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainAddReadContextRule200Response(/, **data: Any)#

Bases: pydantic.BaseModel

DomainAddReadContextRule200Response

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainAddReadContextRule200Response from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainAddReadContextRule200Response from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainAuthenticate(/, **data: Any)#

Bases: pydantic.BaseModel

An object containing external credentials that can be transmuted into a domain identity token

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

token: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainAuthenticate from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainAuthenticate from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainAuthenticateResponse(/, **data: Any)#

Bases: pydantic.BaseModel

A domain identity token

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

token: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainAuthenticateResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainAuthenticateResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainContactIssueVerifyRequest(/, **data: Any)#

Bases: pydantic.BaseModel

Parameters to request new validation request

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainContactIssueVerifyRequest from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainContactIssueVerifyRequest from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainControlLogEntry(/, **data: Any)#

Bases: pydantic.BaseModel

Results for a domain control log query

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

domain: typing_extensions.Annotated[str, Field(strict=True)]#
id: typing_extensions.Annotated[str, Field(strict=True)]#
time: datetime.datetime#
session: typing_extensions.Annotated[str, Field(strict=True)]#
url: pydantic.StrictStr#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=100)]#
description: Dict[str, pydantic.StrictStr]#
model_config#
domain_validate_regular_expression(value)#

Validates the regular expression

id_validate_regular_expression(value)#

Validates the regular expression

session_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainControlLogEntry from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainControlLogEntry from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainControlLogResults(/, **data: Any)#

Bases: pydantic.BaseModel

The results for a query of the capsule access log

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

results: List[antimatter.client.models.domain_control_log_entry.DomainControlLogEntry]#
has_more: pydantic.StrictBool#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainControlLogResults from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainControlLogResults from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainFactList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of defined fact types in the domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

fact_types: List[antimatter.client.models.fact_type_definition.FactTypeDefinition]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainFactList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainFactList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainHooksList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of available hooks in this domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

hooks: List[antimatter.client.models.domain_hooks_list_hooks_inner.DomainHooksListHooksInner] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainHooksList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainHooksList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainHooksListHooksInner(/, **data: Any)#

Bases: pydantic.BaseModel

DomainHooksListHooksInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
url: pydantic.StrictStr#
version: pydantic.StrictStr#
summary: pydantic.StrictStr#
description: pydantic.StrictStr#
output_span_tags: List[pydantic.StrictStr]#
output_capsule_tags: List[pydantic.StrictStr]#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainHooksListHooksInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainHooksListHooksInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityAPIKeyPrincipalParams(/, **data: Any)#

Bases: pydantic.BaseModel

Details for an API key principal

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

type: pydantic.StrictStr#
api_key_id: pydantic.StrictStr | None#
comment: pydantic.StrictStr | None#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityAPIKeyPrincipalParams from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityAPIKeyPrincipalParams from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityEmailPrincipalParams(/, **data: Any)#

Bases: pydantic.BaseModel

Details for an email principal

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

type: pydantic.StrictStr#
email: pydantic.StrictStr#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityEmailPrincipalParams from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityEmailPrincipalParams from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityHostedDomainPrincipalParams(/, **data: Any)#

Bases: pydantic.BaseModel

Additional details for a hosted domain principal

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

type: pydantic.StrictStr#
hosted_domain: pydantic.StrictStr#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityHostedDomainPrincipalParams from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityHostedDomainPrincipalParams from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityPrincipalDetails(*args, **kwargs)#

Bases: pydantic.BaseModel

DomainIdentityPrincipalDetails

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | None#
oneof_schema_2_validator: antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | None#
oneof_schema_3_validator: antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
actual_instance: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
one_of_schemas: List[str]#
model_config#
discriminator_value_class_map: Dict[str, str]#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderDetails(*args, **kwargs)#

Bases: pydantic.BaseModel

DomainIdentityProviderDetails

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
oneof_schema_2_validator: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | None#
actual_instance: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
one_of_schemas: List[str]#
model_config#
discriminator_value_class_map: Dict[str, str]#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderInfo(/, **data: Any)#

Bases: pydantic.BaseModel

Information about an identity provider. This may be an imported provider or a provider in this domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
type: antimatter.client.models.domain_identity_provider_type.DomainIdentityProviderType#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
supported_principals: List[antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType]#
details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityProviderInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of identity providers

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityProviderList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderPrincipalList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of principals in an identity provider

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

principals: List[antimatter.client.models.principal_summary.PrincipalSummary]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderPrincipalList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityProviderPrincipalList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderPrincipalParams(/, **data: Any)#

Bases: pydantic.BaseModel

Details to create a domain identity principal

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

capabilities: List[antimatter.client.models.capability.Capability]#
details: antimatter.client.models.domain_identity_principal_details.DomainIdentityPrincipalDetails#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderPrincipalParams from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainIdentityProviderPrincipalParams from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainIdentityProviderPrincipalType#

Bases: str, enum.Enum

Principal type supported by an identity provider

APIKEY = 'APIKey'#
EMAIL = 'Email'#
HOSTEDDOMAIN = 'HostedDomain'#
classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderPrincipalType from a JSON string

capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.client.DomainIdentityProviderType#

Bases: str, enum.Enum

Type of the identity provider.

GOOGLEOAUTH = 'GoogleOAuth'#
GCPSERVICEACCOUNT = 'GCPServiceAccount'#
APIKEY = 'APIKey'#
classmethod from_json(json_str: str) Self#

Create an instance of DomainIdentityProviderType from a JSON string

capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.client.DomainInsertIdentityProviderPrincipal200Response(/, **data: Any)#

Bases: pydantic.BaseModel

DomainInsertIdentityProviderPrincipal200Response

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
api_key: pydantic.StrictStr | None#
model_config#
principal_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainInsertIdentityProviderPrincipal200Response from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainInsertIdentityProviderPrincipal200Response from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainInsertWriteContextRegexRule200Response(/, **data: Any)#

Bases: pydantic.BaseModel

DomainInsertWriteContextRegexRule200Response

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

rule_id: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
rule_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainInsertWriteContextRegexRule200Response from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainInsertWriteContextRegexRule200Response from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPeerConfig(/, **data: Any)#

Bases: pydantic.BaseModel

Configuration of a domain peer. If the import alias is absent, the domain ID, without the initial “dm-” prefix, will be used

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

export_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
export_all_identity_providers: pydantic.StrictBool | None#
export_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
export_all_facts: pydantic.StrictBool | None#
export_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
export_all_read_contexts: pydantic.StrictBool | None#
export_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
export_all_write_contexts: pydantic.StrictBool | None#
export_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
export_all_capabilities: pydantic.StrictBool | None#
export_domain_policy: pydantic.StrictBool | None#
export_capsule_access_log: pydantic.StrictBool | None#
export_control_log: pydantic.StrictBool | None#
export_capsule_manifest: pydantic.StrictBool | None#
export_billing: pydantic.StrictBool | None#
export_admin_contact: pydantic.StrictBool | None#
nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
import_alias: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
forward_billing: pydantic.StrictBool | None#
forward_admin_communications: pydantic.StrictBool | None#
import_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
import_all_identity_providers: pydantic.StrictBool | None#
import_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
import_all_facts: pydantic.StrictBool | None#
import_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
import_all_read_contexts: pydantic.StrictBool | None#
import_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
import_all_write_contexts: pydantic.StrictBool | None#
import_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
import_all_capabilities: pydantic.StrictBool | None#
import_domain_policy: pydantic.StrictBool | None#
import_precedence: pydantic.StrictInt | None#
import_capsule_access_log: pydantic.StrictBool | None#
import_control_log: pydantic.StrictBool | None#
import_capsule_manifest: pydantic.StrictBool | None#
display_name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
model_config#
import_alias_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPeerConfig from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPeerConfig from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPeerList(/, **data: Any)#

Bases: pydantic.BaseModel

Information about the domains that this domain is peered with

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

peers: List[antimatter.client.models.domain_peer_list_peers_inner.DomainPeerListPeersInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPeerList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPeerList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPeerListPeersInner(/, **data: Any)#

Bases: pydantic.BaseModel

DomainPeerListPeersInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
alias: typing_extensions.Annotated[str, Field(strict=True)]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

alias_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPeerListPeersInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPeerListPeersInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPolicy(/, **data: Any)#

Bases: pydantic.BaseModel

A domain’s policy. These rules govern who can view, edit or use which parts of a domain’s configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is ‘deny’. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

rules: List[antimatter.client.models.domain_policy_rule.DomainPolicyRule]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPolicy from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPolicy from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPolicyRule(/, **data: Any)#

Bases: pydantic.BaseModel

A rule governing the domain’s policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
domain_identity: antimatter.client.models.capability_rule.CapabilityRule | None#
facts: List[antimatter.client.models.fact_policy_rules_inner.FactPolicyRulesInner] | None#
path: pydantic.StrictStr#
operation: pydantic.StrictStr#
result: pydantic.StrictStr#
priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
disabled: pydantic.StrictBool#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

operation_validate_enum(value)#

Validates the enum

result_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPolicyRule from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPolicyRule from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPrivateInfo(/, **data: Any)#

Bases: pydantic.BaseModel

Private information about a domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
id: typing_extensions.Annotated[str, Field(strict=True)]#
identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPrivateInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPrivateInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainPublicInfo(/, **data: Any)#

Bases: pydantic.BaseModel

Public information about a domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
id: typing_extensions.Annotated[str, Field(strict=True)]#
identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainPublicInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainPublicInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainResourceSummary(/, **data: Any)#

Bases: pydantic.BaseModel

A list of the resources and permissions available

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

var_schema: List[antimatter.client.models.domain_resource_summary_schema_inner.DomainResourceSummarySchemaInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainResourceSummary from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainResourceSummary from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainResourceSummarySchemaInner(/, **data: Any)#

Bases: pydantic.BaseModel

DomainResourceSummarySchemaInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

resource: pydantic.StrictStr#
operations: List[pydantic.StrictStr]#
placeholder_values: Dict[str, List[pydantic.StrictStr]]#
description: pydantic.StrictStr#
model_config#
operations_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainResourceSummarySchemaInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainResourceSummarySchemaInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainSettings(/, **data: Any)#

Bases: pydantic.BaseModel

Additional configuration options for a domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

disaster_recovery: antimatter.client.models.domain_settings_disaster_recovery.DomainSettingsDisasterRecovery | None#
admin_contacts: List[pydantic.StrictStr]#
active_admin_contacts: List[pydantic.StrictStr] | None#
pending_admin_contacts: List[pydantic.StrictStr] | None#
default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainSettings from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainSettings from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainSettingsDisasterRecovery(/, **data: Any)#

Bases: pydantic.BaseModel

DomainSettingsDisasterRecovery

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

enable: pydantic.StrictBool | None#
public_key: pydantic.StrictStr | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainSettingsDisasterRecovery from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainSettingsDisasterRecovery from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainSettingsPatch(/, **data: Any)#

Bases: pydantic.BaseModel

A JSON patch to apply to the domain settings

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

patch: List[antimatter.client.models.patch_request_inner.PatchRequestInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainSettingsPatch from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainSettingsPatch from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainStatus(/, **data: Any)#

Bases: pydantic.BaseModel

Information about the status of the domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

notifications: List[antimatter.client.models.domain_status_notifications_inner.DomainStatusNotificationsInner] | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainStatus from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainStatus from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainStatusNotificationsInner(/, **data: Any)#

Bases: pydantic.BaseModel

DomainStatusNotificationsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

summary: pydantic.StrictStr#
description: pydantic.StrictStr#
type: pydantic.StrictStr#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainStatusNotificationsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainStatusNotificationsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.DomainTagInfoResults(/, **data: Any)#

Bases: pydantic.BaseModel

Ordered list of the top 100 tags.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

tags: List[antimatter.client.models.tag_meta.TagMeta]#
has_more: pydantic.StrictBool#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of DomainTagInfoResults from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of DomainTagInfoResults from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.Error(/, **data: Any)#

Bases: pydantic.BaseModel

An internal error

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

trace_id: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of Error from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of Error from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.Fact(/, **data: Any)#

Bases: pydantic.BaseModel

A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
name: typing_extensions.Annotated[str, Field(strict=True)]#
arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

name_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of Fact from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of Fact from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.FactList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of facts

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

facts: List[antimatter.client.models.fact.Fact]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of FactList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of FactList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.FactPolicyRulesInner(/, **data: Any)#

Bases: pydantic.BaseModel

FactPolicyRulesInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

operator: pydantic.StrictStr#
name: typing_extensions.Annotated[str, Field(strict=True)]#
arguments: typing_extensions.Annotated[List[antimatter.client.models.fact_policy_rules_inner_arguments_inner.FactPolicyRulesInnerArgumentsInner], Field(max_length=16)]#
model_config#
operator_validate_enum(value)#

Validates the enum

name_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of FactPolicyRulesInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of FactPolicyRulesInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.FactPolicyRulesInnerArgumentsInner(/, **data: Any)#

Bases: pydantic.BaseModel

FactPolicyRulesInnerArgumentsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

any: pydantic.StrictBool | None#
source: pydantic.StrictStr | None#
capability: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
value: pydantic.StrictStr | None#
model_config#
source_validate_enum(value)#

Validates the enum

capability_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of FactPolicyRulesInnerArgumentsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of FactPolicyRulesInnerArgumentsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.FactTypeDefinition(/, **data: Any)#

Bases: pydantic.BaseModel

A type definition (schema) for a fact

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of FactTypeDefinition from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of FactTypeDefinition from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.GCPServiceAccountKeyInfo(/, **data: Any)#

Bases: pydantic.BaseModel

The GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

service_account_credentials: pydantic.StrictBytes | pydantic.StrictStr#
project_id: pydantic.StrictStr#
location: pydantic.StrictStr#
keyring_id: pydantic.StrictStr#
key_id: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of GCPServiceAccountKeyInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of GCPServiceAccountKeyInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.GoogleOAuthDomainIdentityProviderDetails(/, **data: Any)#

Bases: pydantic.BaseModel

Detailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

type: pydantic.StrictStr#
client_id: pydantic.StrictStr | None#
model_config#
type_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of GoogleOAuthDomainIdentityProviderDetails from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of GoogleOAuthDomainIdentityProviderDetails from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.HookInvocation(/, **data: Any)#

Bases: pydantic.BaseModel

The name and version of a hook that has been invoked on a capsule.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: pydantic.StrictStr#
version: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of HookInvocation from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of HookInvocation from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.InvalidRequestError(/, **data: Any)#

Bases: pydantic.BaseModel

Returned when one of the identifiers or arguments in the request is invalid

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

field: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of InvalidRequestError from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of InvalidRequestError from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestAdd(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestAdd

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
value: antimatter.client.models.json_patch_request_add_value.JSONPatchRequestAddValue#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestAdd from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestAdd from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestAddValue(*args, **kwargs)#

Bases: pydantic.BaseModel

The value to add.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: pydantic.StrictStr | None#
oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
oneof_schema_3_validator: pydantic.StrictBool | None#
actual_instance: bool | float | str | None#
one_of_schemas: List[str]#
model_config#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestCopy(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestCopy

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestCopy from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestCopy from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestMove(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestMove

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestMove from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestMove from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestRemove(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestRemove

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestRemove from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestRemove from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestReplace(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestReplace

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
value: antimatter.client.models.json_patch_request_replace_value.JSONPatchRequestReplaceValue#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestReplace from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestReplace from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestReplaceValue(*args, **kwargs)#

Bases: pydantic.BaseModel

The value to replace.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: pydantic.StrictStr | None#
oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
oneof_schema_3_validator: pydantic.StrictBool | None#
actual_instance: bool | float | str | None#
one_of_schemas: List[str]#
model_config#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestTst(/, **data: Any)#

Bases: pydantic.BaseModel

JSONPatchRequestTst

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

path: pydantic.StrictStr#
value: antimatter.client.models.json_patch_request_tst_value.JSONPatchRequestTstValue#
op: pydantic.StrictStr#
model_config#
op_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of JSONPatchRequestTst from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of JSONPatchRequestTst from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.JSONPatchRequestTstValue(*args, **kwargs)#

Bases: pydantic.BaseModel

The value to test.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: pydantic.StrictStr | None#
oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
oneof_schema_3_validator: pydantic.StrictBool | None#
actual_instance: bool | float | str | None#
one_of_schemas: List[str]#
model_config#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.KeyInfos(/, **data: Any)#

Bases: pydantic.BaseModel

Holds the required service account information for varying providers.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

description: pydantic.StrictStr | None#
key_information: antimatter.client.models.key_infos_key_information.KeyInfosKeyInformation#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of KeyInfos from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of KeyInfos from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.KeyInfosKeyInformation(*args, **kwargs)#

Bases: pydantic.BaseModel

KeyInfosKeyInformation

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
oneof_schema_2_validator: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | None#
oneof_schema_3_validator: antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | None#
actual_instance: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
one_of_schemas: List[str]#
model_config#
discriminator_value_class_map: Dict[str, str]#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewAccessLogEntry(/, **data: Any)#

Bases: pydantic.BaseModel

An individual capsule data-plane log entry, in the form required when inserting a new record

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

operation: pydantic.StrictStr#
location: pydantic.StrictStr | None#
read_info: antimatter.client.models.new_access_log_entry_read_info.NewAccessLogEntryReadInfo#
model_config#
operation_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewAccessLogEntry from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewAccessLogEntry from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewAccessLogEntryReadInfo(/, **data: Any)#

Bases: pydantic.BaseModel

information available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

parameters: Dict[str, pydantic.StrictStr]#
allowed_tags: antimatter.client.models.tag_summary.TagSummary#
redacted_tags: antimatter.client.models.tag_summary.TagSummary#
tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
returned_records: pydantic.StrictInt#
filtered_records: pydantic.StrictInt#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewAccessLogEntryReadInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewAccessLogEntryReadInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewCapabilityDefinition(/, **data: Any)#

Bases: pydantic.BaseModel

A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

unary: pydantic.StrictBool#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewCapabilityDefinition from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewCapabilityDefinition from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewDomain(/, **data: Any)#

Bases: pydantic.BaseModel

Parameters when creating a domain

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
display_name: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=40)]]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewDomain from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewDomain from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewDomainResponse(/, **data: Any)#

Bases: pydantic.BaseModel

Information returned from a successful domain create request

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
api_key: pydantic.StrictStr#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewDomainResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewDomainResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewFact(/, **data: Any)#

Bases: pydantic.BaseModel

A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewFact from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewFact from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewFactTypeDefinition(/, **data: Any)#

Bases: pydantic.BaseModel

A type definition (schema) for a fact being created

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewFactTypeDefinition from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewFactTypeDefinition from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewFactTypeDefinitionArgumentsInner(/, **data: Any)#

Bases: pydantic.BaseModel

NewFactTypeDefinitionArgumentsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=32)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=128)]#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewFactTypeDefinitionArgumentsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewFactTypeDefinitionArgumentsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.NewReadContextConfigRule(/, **data: Any)#

Bases: pydantic.BaseModel

Information about what must be done to data when it is read from a capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
action: pydantic.StrictStr#
token_scope: pydantic.StrictStr | None#
token_format: pydantic.StrictStr | None#
facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
model_config#
action_validate_enum(value)#

Validates the enum

token_scope_validate_enum(value)#

Validates the enum

token_format_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of NewReadContextConfigRule from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of NewReadContextConfigRule from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.PatchRequestInner(*args, **kwargs)#

Bases: pydantic.BaseModel

PatchRequestInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

oneof_schema_1_validator: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | None#
oneof_schema_2_validator: antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | None#
oneof_schema_3_validator: antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
oneof_schema_4_validator: antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | None#
oneof_schema_5_validator: antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | None#
oneof_schema_6_validator: antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | None#
actual_instance: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
one_of_schemas: List[str]#
model_config#
discriminator_value_class_map: Dict[str, str]#
actual_instance_must_validate_oneof(v)#
classmethod from_dict(obj: dict) Self#
classmethod from_json(json_str: str) Self#

Returns the object represented by the json string

to_json() str#

Returns the JSON representation of the actual instance

to_dict() Dict#

Returns the dict representation of the actual instance

to_str() str#

Returns the string representation of the actual instance

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.PrincipalInfo(/, **data: Any)#

Bases: pydantic.BaseModel

Detailed information about a principal

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
capabilities: List[antimatter.client.models.capability.Capability]#
details: antimatter.client.models.domain_identity_principal_details.DomainIdentityPrincipalDetails#
model_config#
principal_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of PrincipalInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of PrincipalInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.PrincipalSummary(/, **data: Any)#

Bases: pydantic.BaseModel

PrincipalSummary

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
principal_type: antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType#
model_config#
principal_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of PrincipalSummary from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of PrincipalSummary from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextConfigRule(/, **data: Any)#

Bases: pydantic.BaseModel

Information about what must be done to data when it is read from a capsule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
action: pydantic.StrictStr#
token_scope: pydantic.StrictStr | None#
token_format: pydantic.StrictStr | None#
facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

action_validate_enum(value)#

Validates the enum

token_scope_validate_enum(value)#

Validates the enum

token_format_validate_enum(value)#

Validates the enum

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextConfigRule from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextConfigRule from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextDetails(/, **data: Any)#

Bases: pydantic.BaseModel

Details about a read context

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
disable_read_logging: pydantic.StrictBool | None#
key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
rules: List[antimatter.client.models.read_context_config_rule.ReadContextConfigRule]#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextDetails from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextDetails from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of read contexts

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

read_contexts: List[antimatter.client.models.read_context_short_details.ReadContextShortDetails]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextParameter(/, **data: Any)#

Bases: pydantic.BaseModel

Declare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc).

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

key: pydantic.StrictStr | None#
required: pydantic.StrictBool | None#
description: pydantic.StrictStr | None#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextParameter from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextParameter from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextRequiredHook(/, **data: Any)#

Bases: pydantic.BaseModel

ReadContextRequiredHook

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

hook: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
constraint: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
write_context: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
model_config#
hook_validate_regular_expression(value)#

Validates the regular expression

constraint_validate_regular_expression(value)#

Validates the regular expression

write_context_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextRequiredHook from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextRequiredHook from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextRuleFactsInner(/, **data: Any)#

Bases: pydantic.BaseModel

ReadContextRuleFactsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

operator: pydantic.StrictStr | None#
name: pydantic.StrictStr | None#
arguments: List[antimatter.client.models.read_context_rule_facts_inner_arguments_inner.ReadContextRuleFactsInnerArgumentsInner] | None#
model_config#
operator_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextRuleFactsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextRuleFactsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextRuleFactsInnerArgumentsInner(/, **data: Any)#

Bases: pydantic.BaseModel

ReadContextRuleFactsInnerArgumentsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

source: pydantic.StrictStr | None#
key: pydantic.StrictStr | None#
value: pydantic.StrictStr | None#
model_config#
source_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextRuleFactsInnerArgumentsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextRuleFactsInnerArgumentsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextRuleMatchExpressionsInner(/, **data: Any)#

Bases: pydantic.BaseModel

ReadContextRuleMatchExpressionsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

source: pydantic.StrictStr#
key: pydantic.StrictStr#
operator: pydantic.StrictStr#
values: List[pydantic.StrictStr] | None#
value: pydantic.StrictStr | None#
model_config#
source_validate_enum(value)#

Validates the enum

operator_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextRuleMatchExpressionsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextRuleMatchExpressionsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ReadContextShortDetails(/, **data: Any)#

Bases: pydantic.BaseModel

Abridged details about a read context

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
disable_read_logging: pydantic.StrictBool | None#
key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ReadContextShortDetails from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ReadContextShortDetails from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ResourceExhaustedError(/, **data: Any)#

Bases: pydantic.BaseModel

Returned when the server is unable to process the request due to resource exhaustion or rate limiting

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

resource_type: pydantic.StrictStr#
identifier: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ResourceExhaustedError from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ResourceExhaustedError from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.ResourceNotFoundError(/, **data: Any)#

Bases: pydantic.BaseModel

Returned when interacting with a valid URL, but the request references an unknown resource

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

resource_type: pydantic.StrictStr#
identifier: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of ResourceNotFoundError from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of ResourceNotFoundError from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.RootEncryptionKeyIDResponse(/, **data: Any)#

Bases: pydantic.BaseModel

The newly created root encryption key’s ID.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

rek_id: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of RootEncryptionKeyIDResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of RootEncryptionKeyIDResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.RootEncryptionKeyItem(/, **data: Any)#

Bases: pydantic.BaseModel

RootEncryptionKeyItem

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

source: pydantic.StrictStr#
var_resource_path: pydantic.StrictStr#
rek_id: pydantic.StrictStr#
description: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of RootEncryptionKeyItem from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of RootEncryptionKeyItem from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.RootEncryptionKeyTestResponse(/, **data: Any)#

Bases: pydantic.BaseModel

RootEncryptionKeyTestResponse

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: typing_extensions.Annotated[str, Field(strict=True)]#
source: pydantic.StrictStr#
var_resource_path: pydantic.StrictStr#
description: pydantic.StrictStr#
status: pydantic.StrictStr#
status_message: pydantic.StrictStr#
latency_ms: pydantic.StrictFloat | pydantic.StrictInt#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

status_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of RootEncryptionKeyTestResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of RootEncryptionKeyTestResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.RotateKeyEncryptionKeyResponse(/, **data: Any)#

Bases: pydantic.BaseModel

The results for a query of the capsule access log

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

has_more: pydantic.StrictBool#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of RotateKeyEncryptionKeyResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of RotateKeyEncryptionKeyResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.StarredDomainList(/, **data: Any)#

Bases: pydantic.BaseModel

StarredDomainList

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

domains: List[typing_extensions.Annotated[str, Field(strict=True)]]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of StarredDomainList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of StarredDomainList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.Tag(/, **data: Any)#

Bases: pydantic.BaseModel

Tag

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
value: typing_extensions.Annotated[str, Field(strict=True, max_length=256)]#
type: antimatter.client.models.tag_type_field.TagTypeField#
source: pydantic.StrictStr#
hook_version: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
model_config#
hook_version_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of Tag from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of Tag from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagMeta(/, **data: Any)#

Bases: pydantic.BaseModel

TagMeta

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagMeta from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagMeta from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagSet(/, **data: Any)#

Bases: pydantic.BaseModel

TagSet

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

capsule_tags: List[antimatter.client.models.tag.Tag]#
span_tags: List[antimatter.client.models.tag_set_span_tags_inner.TagSetSpanTagsInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagSet from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagSet from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagSetSpanTagsInner(/, **data: Any)#

Bases: pydantic.BaseModel

TagSetSpanTagsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

start: pydantic.StrictInt#
end: pydantic.StrictInt#
tags: List[antimatter.client.models.tag.Tag]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagSetSpanTagsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagSetSpanTagsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagSummary(/, **data: Any)#

Bases: pydantic.BaseModel

TagSummary

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

unique_tags: List[antimatter.client.models.tag_summary_unique_tags_inner.TagSummaryUniqueTagsInner]#
elided_tags: List[antimatter.client.models.tag_summary_elided_tags_inner.TagSummaryElidedTagsInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagSummary from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagSummary from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagSummaryElidedTagsInner(/, **data: Any)#

Bases: pydantic.BaseModel

TagSummaryElidedTagsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

tag_name: pydantic.StrictStr#
num_unique_tags: pydantic.StrictInt#
total_occurrences: pydantic.StrictInt#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagSummaryElidedTagsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagSummaryElidedTagsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagSummaryUniqueTagsInner(/, **data: Any)#

Bases: pydantic.BaseModel

TagSummaryUniqueTagsInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

tag: antimatter.client.models.tag.Tag#
occurrences: pydantic.StrictInt#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of TagSummaryUniqueTagsInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of TagSummaryUniqueTagsInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.TagTypeField#

Bases: str, enum.Enum

the type of this tag

STRING = 'string'#
NUMBER = 'number'#
BOOLEAN = 'boolean'#
DATE = 'date'#
UNARY = 'unary'#
classmethod from_json(json_str: str) Self#

Create an instance of TagTypeField from a JSON string

capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.client.UnauthorizedError(/, **data: Any)#

Bases: pydantic.BaseModel

Returned when the server cannot authorize the request

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

message: pydantic.StrictStr#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of UnauthorizedError from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of UnauthorizedError from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.UpsertSpanTagsRequest(/, **data: Any)#

Bases: pydantic.BaseModel

UpsertSpanTagsRequest

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

summary: antimatter.client.models.tag_summary.TagSummary#
create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of UpsertSpanTagsRequest from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of UpsertSpanTagsRequest from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.VerifyContactResponse(/, **data: Any)#

Bases: pydantic.BaseModel

Returned by successful contact email verification

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

domain: typing_extensions.Annotated[str, Field(strict=True)]#
email: pydantic.StrictStr#
message: pydantic.StrictStr#
model_config#
domain_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of VerifyContactResponse from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of VerifyContactResponse from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextConfigInfo(/, **data: Any)#

Bases: pydantic.BaseModel

Information about write context config rules

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

key_reuse_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
required_hooks: List[antimatter.client.models.write_context_config_info_required_hooks_inner.WriteContextConfigInfoRequiredHooksInner]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextConfigInfo from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextConfigInfo from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextConfigInfoRequiredHooksInner(/, **data: Any)#

Bases: pydantic.BaseModel

WriteContextConfigInfoRequiredHooksInner

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

hook: typing_extensions.Annotated[str, Field(strict=True)]#
constraint: typing_extensions.Annotated[str, Field(strict=True)]#
mode: pydantic.StrictStr#
model_config#
hook_validate_regular_expression(value)#

Validates the regular expression

constraint_validate_regular_expression(value)#

Validates the regular expression

mode_validate_enum(value)#

Validates the enum

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextConfigInfoRequiredHooksInner from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextConfigInfoRequiredHooksInner from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextDetails(/, **data: Any)#

Bases: pydantic.BaseModel

Details about a write context

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True)]#
summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
config: antimatter.client.models.write_context_config_info.WriteContextConfigInfo#
imported: pydantic.StrictBool#
source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
source_domain_name: pydantic.StrictStr | None#
model_config#
name_validate_regular_expression(value)#

Validates the regular expression

source_domain_id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextDetails from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextDetails from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextList(/, **data: Any)#

Bases: pydantic.BaseModel

A list of write contexts

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

write_contexts: List[antimatter.client.models.write_context_details.WriteContextDetails]#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextList from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextList from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextRegexRule(/, **data: Any)#

Bases: pydantic.BaseModel

Regex classifier rule for a write context

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
pattern: pydantic.StrictStr#
match_on_key: pydantic.StrictBool#
span_tags: List[antimatter.client.models.write_context_regex_tag.WriteContextRegexTag]#
capsule_tags: List[antimatter.client.models.write_context_regex_tag.WriteContextRegexTag]#
model_config#
id_validate_regular_expression(value)#

Validates the regular expression

to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextRegexRule from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextRegexRule from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#
class antimatter.client.WriteContextRegexTag(/, **data: Any)#

Bases: pydantic.BaseModel

Tag descriptor for a write context regex rule

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
type: antimatter.client.models.tag_type_field.TagTypeField#
model_config#
to_str() str#

Returns the string representation of the model using alias

to_json() str#

Returns the JSON representation of the model using alias

classmethod from_json(json_str: str) Self#

Create an instance of WriteContextRegexTag from a JSON string

to_dict() Dict[str, Any]#

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic’s self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.

classmethod from_dict(obj: Dict) Self#

Create an instance of WriteContextRegexTag from a dict

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]#
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str#
classmethod parse_obj(obj: Any) Model#
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model#
classmethod from_orm(obj: Any) Model#
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model#
copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any]#
classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str#
classmethod validate(value: Any) Model#
classmethod update_forward_refs(**localns: Any) None#