antimatter.client
#
Antimatter Public API
Interact with the Antimatter Cloud API
The version of the OpenAPI document: 1.1.3 Contact: support@antimatter.io Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
Subpackages#
antimatter.client.api
antimatter.client.models
antimatter.client.models.access_log_entry
antimatter.client.models.access_log_entry_create_info
antimatter.client.models.access_log_entry_open_info
antimatter.client.models.access_log_entry_read_info
antimatter.client.models.access_log_results
antimatter.client.models.active_root_encryption_key_id
antimatter.client.models.add_capsule_log_entry_request
antimatter.client.models.add_read_context
antimatter.client.models.add_write_context
antimatter.client.models.antimatter_delegated_aws_key_info
antimatter.client.models.api_key_domain_identity_provider_details
antimatter.client.models.available_delegated_root_encryption_key_provider
antimatter.client.models.available_root_encryption_key_providers
antimatter.client.models.available_root_encryption_key_providers_providers_inner
antimatter.client.models.available_service_account_root_encryption_key_provider
antimatter.client.models.aws_service_account_key_info
antimatter.client.models.capability
antimatter.client.models.capability_definition
antimatter.client.models.capability_definition_list
antimatter.client.models.capability_list
antimatter.client.models.capability_rule
antimatter.client.models.capability_rule_match_expressions_inner
antimatter.client.models.capsule_create_response
antimatter.client.models.capsule_info
antimatter.client.models.capsule_list
antimatter.client.models.capsule_open_request
antimatter.client.models.capsule_open_response
antimatter.client.models.capsule_open_response_read_context_configuration
antimatter.client.models.capsule_seal_request
antimatter.client.models.conflict_error
antimatter.client.models.create_peer_domain
antimatter.client.models.data_tagging_hook_input
antimatter.client.models.data_tagging_hook_input_records_inner
antimatter.client.models.data_tagging_hook_input_records_inner_elements_inner
antimatter.client.models.data_tagging_hook_response
antimatter.client.models.data_tagging_hook_response_records_inner
antimatter.client.models.delete_tags
antimatter.client.models.domain
antimatter.client.models.domain_add_read_context_rule200_response
antimatter.client.models.domain_authenticate
antimatter.client.models.domain_authenticate_response
antimatter.client.models.domain_contact_issue_verify_request
antimatter.client.models.domain_control_log_entry
antimatter.client.models.domain_control_log_results
antimatter.client.models.domain_fact_list
antimatter.client.models.domain_hooks_list
antimatter.client.models.domain_hooks_list_hooks_inner
antimatter.client.models.domain_identity_api_key_principal_params
antimatter.client.models.domain_identity_email_principal_params
antimatter.client.models.domain_identity_hosted_domain_principal_params
antimatter.client.models.domain_identity_principal_details
antimatter.client.models.domain_identity_provider_details
antimatter.client.models.domain_identity_provider_info
antimatter.client.models.domain_identity_provider_list
antimatter.client.models.domain_identity_provider_principal_list
antimatter.client.models.domain_identity_provider_principal_params
antimatter.client.models.domain_identity_provider_principal_type
antimatter.client.models.domain_identity_provider_type
antimatter.client.models.domain_insert_identity_provider_principal200_response
antimatter.client.models.domain_insert_write_context_regex_rule200_response
antimatter.client.models.domain_peer_config
antimatter.client.models.domain_peer_list
antimatter.client.models.domain_peer_list_peers_inner
antimatter.client.models.domain_policy
antimatter.client.models.domain_policy_rule
antimatter.client.models.domain_private_info
antimatter.client.models.domain_public_info
antimatter.client.models.domain_resource_summary
antimatter.client.models.domain_resource_summary_schema_inner
antimatter.client.models.domain_settings
antimatter.client.models.domain_settings_disaster_recovery
antimatter.client.models.domain_settings_patch
antimatter.client.models.domain_status
antimatter.client.models.domain_status_notifications_inner
antimatter.client.models.domain_tag_info_results
antimatter.client.models.error
antimatter.client.models.fact
antimatter.client.models.fact_list
antimatter.client.models.fact_policy_rules_inner
antimatter.client.models.fact_policy_rules_inner_arguments_inner
antimatter.client.models.fact_type_definition
antimatter.client.models.gcp_service_account_key_info
antimatter.client.models.google_o_auth_domain_identity_provider_details
antimatter.client.models.hook_invocation
antimatter.client.models.invalid_request_error
antimatter.client.models.json_patch_request_add
antimatter.client.models.json_patch_request_add_value
antimatter.client.models.json_patch_request_copy
antimatter.client.models.json_patch_request_move
antimatter.client.models.json_patch_request_remove
antimatter.client.models.json_patch_request_replace
antimatter.client.models.json_patch_request_replace_value
antimatter.client.models.json_patch_request_tst
antimatter.client.models.json_patch_request_tst_value
antimatter.client.models.key_infos
antimatter.client.models.key_infos_key_information
antimatter.client.models.new_access_log_entry
antimatter.client.models.new_access_log_entry_read_info
antimatter.client.models.new_capability_definition
antimatter.client.models.new_domain
antimatter.client.models.new_domain_response
antimatter.client.models.new_fact
antimatter.client.models.new_fact_type_definition
antimatter.client.models.new_fact_type_definition_arguments_inner
antimatter.client.models.new_read_context_config_rule
antimatter.client.models.patch_request_inner
antimatter.client.models.principal_info
antimatter.client.models.principal_summary
antimatter.client.models.read_context_config_rule
antimatter.client.models.read_context_details
antimatter.client.models.read_context_list
antimatter.client.models.read_context_parameter
antimatter.client.models.read_context_required_hook
antimatter.client.models.read_context_rule_facts_inner
antimatter.client.models.read_context_rule_facts_inner_arguments_inner
antimatter.client.models.read_context_rule_match_expressions_inner
antimatter.client.models.read_context_short_details
antimatter.client.models.resource_exhausted_error
antimatter.client.models.resource_not_found_error
antimatter.client.models.root_encryption_key_id_response
antimatter.client.models.root_encryption_key_item
antimatter.client.models.root_encryption_key_test_response
antimatter.client.models.rotate_key_encryption_key_response
antimatter.client.models.starred_domain_list
antimatter.client.models.tag
antimatter.client.models.tag_meta
antimatter.client.models.tag_set
antimatter.client.models.tag_set_span_tags_inner
antimatter.client.models.tag_summary
antimatter.client.models.tag_summary_elided_tags_inner
antimatter.client.models.tag_summary_unique_tags_inner
antimatter.client.models.tag_type_field
antimatter.client.models.unauthorized_error
antimatter.client.models.upsert_span_tags_request
antimatter.client.models.verify_contact_response
antimatter.client.models.write_context_config_info
antimatter.client.models.write_context_config_info_required_hooks_inner
antimatter.client.models.write_context_details
antimatter.client.models.write_context_list
antimatter.client.models.write_context_regex_rule
antimatter.client.models.write_context_regex_tag
Submodules#
Package Contents#
Classes#
NOTE: This class is auto generated by OpenAPI Generator |
|
API response object |
|
Generic API client for OpenAPI client library builds. |
|
This class contains various settings of the API client. |
|
Detailed information about an API key identity provider |
|
The AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations. |
|
An individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in) |
|
information available if the operation is of type "create". |
|
information available if the operation is of type "open". |
|
information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read. |
|
The results for a query of the capsule access log |
|
The stored key ID to use as the active root encryption key. |
|
A request to add a capsule log entry |
|
A request to add read contexts |
|
Information for adding/updating a write context |
|
The details required to use an AWS KMS root encryption key that has been delegated to Antimatter's AWS account. This will use Antimatter's service account during set up of the AWS client. |
|
AvailableDelegatedRootEncryptionKeyProvider |
|
AvailableRootEncryptionKeyProviders |
|
AvailableRootEncryptionKeyProvidersProvidersInner |
|
AvailableServiceAccountRootEncryptionKeyProvider |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
A list of capability definitions |
|
A list of capabilities |
|
A rule that refers to a domain identity capability. These rules are ANDed together |
|
CapabilityRuleMatchExpressionsInner |
|
The response for the creation of a new capsule |
|
A summary of the capsule |
|
List of capsules |
|
A request to open (decrypt) a capsule |
|
Contains key material for a capsule |
|
the material required for enacting read context configuration (e.g. wasm stuff) |
|
Information applied when sealing a capsule (marking it as complete) |
|
Returned when attempting to delete a resource that is still in use by other resources |
|
Configuration options for creating a new subdomain. |
|
A request to classify PII in a batch of records |
|
DataTaggingHookInputRecordsInner |
|
DataTaggingHookInputRecordsInnerElementsInner |
|
A response from invoking a data tagging hook |
|
DataTaggingHookResponseRecordsInner |
|
DeleteTags |
|
Information about a domain |
|
DomainAddReadContextRule200Response |
|
An object containing external credentials that can be transmuted into a domain identity token |
|
A domain identity token |
|
Parameters to request new validation request |
|
Results for a domain control log query |
|
The results for a query of the capsule access log |
|
A list of defined fact types in the domain |
|
A list of available hooks in this domain |
|
DomainHooksListHooksInner |
|
Details for an API key principal |
|
Details for an email principal |
|
Additional details for a hosted domain principal |
|
DomainIdentityPrincipalDetails |
|
DomainIdentityProviderDetails |
|
Information about an identity provider. This may be an imported provider or a provider in this domain |
|
A list of identity providers |
|
A list of principals in an identity provider |
|
Details to create a domain identity principal |
|
Principal type supported by an identity provider |
|
Type of the identity provider. |
|
DomainInsertIdentityProviderPrincipal200Response |
|
DomainInsertWriteContextRegexRule200Response |
|
Configuration of a domain peer. If the import alias is absent, the domain ID, without the initial "dm-" prefix, will be used |
|
Information about the domains that this domain is peered with |
|
DomainPeerListPeersInner |
|
A domain's policy. These rules govern who can view, edit or use which parts of a domain's configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is 'deny'. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow. |
|
A rule governing the domain's policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted. |
|
Private information about a domain |
|
Public information about a domain |
|
A list of the resources and permissions available |
|
DomainResourceSummarySchemaInner |
|
Additional configuration options for a domain |
|
DomainSettingsDisasterRecovery |
|
A JSON patch to apply to the domain settings |
|
Information about the status of the domain |
|
DomainStatusNotificationsInner |
|
Ordered list of the top 100 tags. |
|
An internal error |
|
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name) |
|
A list of facts |
|
FactPolicyRulesInner |
|
FactPolicyRulesInnerArgumentsInner |
|
A type definition (schema) for a fact |
|
The GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations. |
|
Detailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used. |
|
The name and version of a hook that has been invoked on a capsule. |
|
Returned when one of the identifiers or arguments in the request is invalid |
|
JSONPatchRequestAdd |
|
The value to add. |
|
JSONPatchRequestCopy |
|
JSONPatchRequestMove |
|
JSONPatchRequestRemove |
|
JSONPatchRequestReplace |
|
The value to replace. |
|
JSONPatchRequestTst |
|
The value to test. |
|
Holds the required service account information for varying providers. |
|
KeyInfosKeyInformation |
|
An individual capsule data-plane log entry, in the form required when inserting a new record |
|
information available if the operation is of type "read". allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read. |
|
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability. |
|
Parameters when creating a domain |
|
Information returned from a successful domain create request |
|
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name) |
|
A type definition (schema) for a fact being created |
|
NewFactTypeDefinitionArgumentsInner |
|
Information about what must be done to data when it is read from a capsule |
|
PatchRequestInner |
|
Detailed information about a principal |
|
PrincipalSummary |
|
Information about what must be done to data when it is read from a capsule |
|
Details about a read context |
|
A list of read contexts |
|
Declare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc). |
|
ReadContextRequiredHook |
|
ReadContextRuleFactsInner |
|
ReadContextRuleFactsInnerArgumentsInner |
|
ReadContextRuleMatchExpressionsInner |
|
Abridged details about a read context |
|
Returned when the server is unable to process the request due to resource exhaustion or rate limiting |
|
Returned when interacting with a valid URL, but the request references an unknown resource |
|
The newly created root encryption key's ID. |
|
RootEncryptionKeyItem |
|
RootEncryptionKeyTestResponse |
|
The results for a query of the capsule access log |
|
StarredDomainList |
|
Tag |
|
TagMeta |
|
TagSet |
|
TagSetSpanTagsInner |
|
TagSummary |
|
TagSummaryElidedTagsInner |
|
TagSummaryUniqueTagsInner |
|
the type of this tag |
|
Returned when the server cannot authorize the request |
|
UpsertSpanTagsRequest |
|
Returned by successful contact email verification |
|
Information about write context config rules |
|
WriteContextConfigInfoRequiredHooksInner |
|
Details about a write context |
|
A list of write contexts |
|
Regex classifier rule for a write context |
|
Tag descriptor for a write context regex rule |
- class antimatter.client.DefaultApi(api_client=None)#
NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech
Do not edit the class manually.
- capsule_get_by_id(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.error.Error #
Get a Capsule by ID
This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.
- Parameters:
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- capsule_get_by_id_with_http_info(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.error.Error] #
Get a Capsule by ID
This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.
- Parameters:
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- capsule_get_by_id_without_preload_content(capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a Capsule by ID
This endpoint allows you to get a Capsule without knowing the Domain ID. It will redirect the user to the full /domains/{domainID}/capsules/{capsuleID} path.
- Parameters:
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_access_log_entry(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Add a capsule audit log entry
Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_access_log_entry_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Add a capsule audit log entry
Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_access_log_entry_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], add_capsule_log_entry_request: antimatter.client.models.add_capsule_log_entry_request.AddCapsuleLogEntryRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Add a capsule audit log entry
Adds a data-plane audit log entry for this capsule. Contains information about the originating principal and about read tag rollups. Contains an open capsule token (read from the file) to ensure that you legitimately read the capsule. Note that not all audit log entry types may be added with this method. Some (like open records) are generated server side.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
add_capsule_log_entry_request (AddCapsuleLogEntryRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_id_response.RootEncryptionKeyIDResponse #
Add a new external root encryption key.
Add a new external credentials that can be used as the domain’s root encryption key.
- Parameters:
domain_id (str) – (required)
key_infos (KeyInfos) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_id_response.RootEncryptionKeyIDResponse] #
Add a new external root encryption key.
Add a new external credentials that can be used as the domain’s root encryption key.
- Parameters:
domain_id (str) – (required)
key_infos (KeyInfos) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], key_infos: antimatter.client.models.key_infos.KeyInfos, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Add a new external root encryption key.
Add a new external credentials that can be used as the domain’s root encryption key.
- Parameters:
domain_id (str) – (required)
key_infos (KeyInfos) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_new(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.new_domain_response.NewDomainResponse #
Add a new domain
Add a new domain with no default peer relationships.
- Parameters:
new_domain (NewDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_new_with_http_info(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.new_domain_response.NewDomainResponse] #
Add a new domain
Add a new domain with no default peer relationships.
- Parameters:
new_domain (NewDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_new_without_preload_content(new_domain: antimatter.client.models.new_domain.NewDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Add a new domain
Add a new domain with no default peer relationships.
- Parameters:
new_domain (NewDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_add_read_context_rule200_response.DomainAddReadContextRule200Response #
Add a read context configuration rule
Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_add_read_context_rule200_response.DomainAddReadContextRule200Response] #
Add a read context configuration rule
Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_add_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Add a read context configuration rule
Read context configuration is rule based, much like domain policy. This adds a new rule to the read context. Rules are processed in priority order, stopping with the first matching rule.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_authenticate(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_authenticate_response.DomainAuthenticateResponse #
Authenticate with a domain
Use an authentication method to obtain a domain ID token
- Parameters:
domain_id (str) – (required)
domain_authenticate (DomainAuthenticate) – (required)
identity_provider_name (str) –
token_exchange (bool) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_authenticate_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_authenticate_response.DomainAuthenticateResponse] #
Authenticate with a domain
Use an authentication method to obtain a domain ID token
- Parameters:
domain_id (str) – (required)
domain_authenticate (DomainAuthenticate) – (required)
identity_provider_name (str) –
token_exchange (bool) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_authenticate_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_authenticate: antimatter.client.models.domain_authenticate.DomainAuthenticate, identity_provider_name: Optional[Annotated[str, Field(strict=True)]] = None, token_exchange: pydantic.StrictBool | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Authenticate with a domain
Use an authentication method to obtain a domain ID token
- Parameters:
domain_id (str) – (required)
domain_authenticate (DomainAuthenticate) – (required)
identity_provider_name (str) –
token_exchange (bool) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_issue_verify(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Issue a new verification request
Issue a new verification request to a admin account associated with the domain that is currently in the pending state.
- Parameters:
domain_id (str) – (required)
domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_issue_verify_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Issue a new verification request
Issue a new verification request to a admin account associated with the domain that is currently in the pending state.
- Parameters:
domain_id (str) – (required)
domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_issue_verify_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_contact_issue_verify_request: antimatter.client.models.domain_contact_issue_verify_request.DomainContactIssueVerifyRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Issue a new verification request
Issue a new verification request to a admin account associated with the domain that is currently in the pending state.
- Parameters:
domain_id (str) – (required)
domain_contact_issue_verify_request (DomainContactIssueVerifyRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_verify(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.verify_contact_response.VerifyContactResponse #
Verify an admin account recently associated with a domain
Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.
- Parameters:
domain_id (str) – (required)
token (str) – Security token issued with verification request (required)
address (str) – Email address to be tested against the supplied token (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_verify_with_http_info(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.verify_contact_response.VerifyContactResponse] #
Verify an admin account recently associated with a domain
Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.
- Parameters:
domain_id (str) – (required)
token (str) – Security token issued with verification request (required)
address (str) – Email address to be tested against the supplied token (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_contact_verify_without_preload_content(domain_id: Annotated[str, Field(strict=True)], token: Annotated[pydantic.StrictStr, Field(description='Security token issued with verification request')], address: Annotated[pydantic.StrictStr, Field(description='Email address to be tested against the supplied token')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Verify an admin account recently associated with a domain
Verify an admin account recently associated with a domain. The token will be submitted to the account address as part of a callback link to this endpoint.
- Parameters:
domain_id (str) – (required)
token (str) – Security token issued with verification request (required)
address (str) – Email address to be tested against the supplied token (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_capsule(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_create_response.CapsuleCreateResponse #
Create a capsule
Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.
- Parameters:
domain_id (str) – (required)
write_context (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_create_response.CapsuleCreateResponse] #
Create a capsule
Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.
- Parameters:
domain_id (str) – (required)
write_context (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], write_context: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create a capsule
Create a new capsule. The ID will be returned. Capsule will be “unsealed” first, meaning it’s still in a creating state. Returns a capsule create token that can be used to feed in additional data about the capsule while it’s still unsealed. Also returns a DEK and an encrypted DEK.
- Parameters:
domain_id (str) – (required)
write_context (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_peer_domain(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.new_domain_response.NewDomainResponse #
Create a peer domain
Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.
- Parameters:
domain_id (str) – (required)
create_peer_domain (CreatePeerDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_peer_domain_with_http_info(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.new_domain_response.NewDomainResponse] #
Create a peer domain
Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.
- Parameters:
domain_id (str) – (required)
create_peer_domain (CreatePeerDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_peer_domain_without_preload_content(domain_id: Annotated[str, Field(strict=True)], create_peer_domain: antimatter.client.models.create_peer_domain.CreatePeerDomain, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create a peer domain
Create a domain with a default “subordinate” peering relationship with the current domain. Namely, the current “parent” domain will be configured to allow the new “child” domain to use the parent’s billing and admin contact settings, and the child domain will be configured to import those settings. Optionally, similar linking can be performed for identity providers, read/write contexts and facts by setting the appropriate linkX parameter to true. In most cases, what you want is to set linkAll=true. Note, that a “subdomain” is just shorthand for a domain with the above-described peering config. This peering can be changed at any time, and there is no permanent difference between a domain created in this way, and a domain created with POST /domains.
- Parameters:
domain_id (str) – (required)
create_peer_domain (CreatePeerDomain) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_policy_rule(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy_rule.DomainPolicyRule #
Create a domain policy rule
Create a domain policy rule
- Parameters:
domain_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy_rule.DomainPolicyRule] #
Create a domain policy rule
Create a domain policy rule
- Parameters:
domain_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_create_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create a domain policy rule
Create a domain policy rule
- Parameters:
domain_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_data_tagging_hook_invoke(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.data_tagging_hook_response.DataTaggingHookResponse #
Invoke a hook
Invoke a hook that operates on data and returns tags
- Parameters:
domain_id (str) – (required)
hook_name (str) – (required)
data_tagging_hook_input (DataTaggingHookInput) – (required)
write_context (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_data_tagging_hook_invoke_with_http_info(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.data_tagging_hook_response.DataTaggingHookResponse] #
Invoke a hook
Invoke a hook that operates on data and returns tags
- Parameters:
domain_id (str) – (required)
hook_name (str) – (required)
data_tagging_hook_input (DataTaggingHookInput) – (required)
write_context (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_data_tagging_hook_invoke_without_preload_content(domain_id: Annotated[str, Field(strict=True)], hook_name: Annotated[str, Field(strict=True)], data_tagging_hook_input: antimatter.client.models.data_tagging_hook_input.DataTaggingHookInput, write_context: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Invoke a hook
Invoke a hook that operates on data and returns tags
- Parameters:
domain_id (str) – (required)
hook_name (str) – (required)
data_tagging_hook_input (DataTaggingHookInput) – (required)
write_context (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a capability
Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a capability
Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a capability
Delete a capability. All rules that reference the capability must have already been deleted, or you will get an error
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capsule_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete capsule-level tags
Delete capsule-level tags
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
delete_tags (DeleteTags) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capsule_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete capsule-level tags
Delete capsule-level tags
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
delete_tags (DeleteTags) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_capsule_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], delete_tags: antimatter.client.models.delete_tags.DeleteTags, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete capsule-level tags
Delete capsule-level tags
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
delete_tags (DeleteTags) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete an external root encryption key by ID.
Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete an external root encryption key by ID.
Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete an external root encryption key by ID.
Delete an external root encryption key using its ID. This operation is only successful if the external root encryption key is not in use by any data key encryption keys.
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_by_id(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a fact
Delete a fact by ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be deleted. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_by_id_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a fact
Delete a fact by ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be deleted. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_by_id_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be deleted.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a fact
Delete a fact by ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be deleted. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a fact type
Deletes a fact type and all facts inside it
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
confirm (str) – the fact type again, to confirm you really want to delete it (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a fact type
Deletes a fact type and all facts inside it
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
confirm (str) – the fact type again, to confirm you really want to delete it (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], confirm: Annotated[str, Field(strict=True, description='the fact type again, to confirm you really want to delete it')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a fact type
Deletes a fact type and all facts inside it
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
confirm (str) – the fact type again, to confirm you really want to delete it (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete an identity provider
Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete an identity provider
Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete an identity provider
Delete an identity provider. All domain tokens created using this identity provider will be invalidated. Take care not to remove the identity provider that is providing you admin access to your domain, as you may “lock yourself out”.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete identity provider principal
Delete an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete identity provider principal
Delete an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete identity provider principal
Delete an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_peer(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a peer domain
Removes the peering relationship with the given domain
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a peer domain
Removes the peering relationship with the given domain
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a peer domain
Removes the peering relationship with the given domain
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_policy_rule(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a domain policy rule
Delete a domain policy rule by ID
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a domain policy rule
Delete a domain policy rule by ID
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a domain policy rule
Delete a domain policy rule by ID
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a read context
Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a read context
Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a read context
Delete a read context. All configuration associated with this read context will also be deleted. Domain policy rules referencing this read context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a read context configuration rule
Deletes a read context configuration rule by ID.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a read context configuration rule
Deletes a read context configuration rule by ID.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a read context configuration rule
Deletes a read context configuration rule by ID.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Delete a write context
Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Delete a write context
Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Delete a write context
Delete a write context. All configuration associated with this write context will also be deleted. Domain policy rules referencing this write context will be left as-is
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context_regex_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
domain_delete_write_context_regex_rule
Delete a regex classifier rule for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context_regex_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
domain_delete_write_context_regex_rule
Delete a regex classifier rule for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_delete_write_context_regex_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
domain_delete_write_context_regex_rule
Delete a regex classifier rule for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_describe_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.write_context_details.WriteContextDetails #
Describe a write context
Returns a detailed description of a write context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_describe_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.write_context_details.WriteContextDetails] #
Describe a write context
Returns a detailed description of a write context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_describe_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Describe a write context
Returns a detailed description of a write context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_external_root_encryption_key_test(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_test_response.RootEncryptionKeyTestResponse #
Test the health of a root encryption key
Attempts to use a root encryption key to encrypt and decrypt, validating its availability
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_external_root_encryption_key_test_with_http_info(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_test_response.RootEncryptionKeyTestResponse] #
Test the health of a root encryption key
Attempts to use a root encryption key to encrypt and decrypt, validating its availability
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_external_root_encryption_key_test_without_preload_content(domain_id: Annotated[str, Field(strict=True)], root_encryption_key_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Test the health of a root encryption key
Attempts to use a root encryption key to encrypt and decrypt, validating its availability
- Parameters:
domain_id (str) – (required)
root_encryption_key_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_flush_encryption_keys(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Flush all encryption keys
Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available
- Parameters:
domain_id (str) – (required)
body (object) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_flush_encryption_keys_with_http_info(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Flush all encryption keys
Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available
- Parameters:
domain_id (str) – (required)
body (object) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_flush_encryption_keys_without_preload_content(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any] | None = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Flush all encryption keys
Flush all keys in memory. The keys will be immediately reloaded from persistent storage, forcing a check that the domain’s root key is still available
- Parameters:
domain_id (str) – (required)
body (object) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_active_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem #
Get the active root encryption key’s information.
Return the details about the current active root encryption key used by the domain ID.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_active_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem] #
Get the active root encryption key’s information.
Return the details about the current active root encryption key used by the domain ID.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_active_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the active root encryption key’s information.
Return the details about the current active root encryption key used by the domain ID.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capabilities(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capability_definition_list.CapabilityDefinitionList #
Get the domain capabilities
Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capabilities_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capability_definition_list.CapabilityDefinitionList] #
Get the domain capabilities
Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capabilities_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain capabilities
Get the domain capabilities. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capability_definition.CapabilityDefinition #
Get a single capability
Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capability_definition.CapabilityDefinition] #
Get a single capability
Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a single capability
Get a capability. A capability is a key/value pair that can be attached to a domain identity by an identity provider. The capabilities can be referenced by the domain policy rules.
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capsule_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_info.CapsuleInfo #
Get capsule info
Get the summary information about this capsule
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capsule_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_info.CapsuleInfo] #
Get capsule info
Get the summary information about this capsule
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_capsule_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get capsule info
Get the summary information about this capsule
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_external_root_encryption_key_providers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.available_root_encryption_key_providers.AvailableRootEncryptionKeyProviders #
Returns a list of available root encryption key providers.
Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_external_root_encryption_key_providers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.available_root_encryption_key_providers.AvailableRootEncryptionKeyProviders] #
Returns a list of available root encryption key providers.
Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_external_root_encryption_key_providers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Returns a list of available root encryption key providers.
Returns a list of available root encryption key providers, along with description and, if relevant, additional information required to successfully configure the external root encryption key.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_by_id(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact.Fact #
Get a fact by ID
Returns the fact with the given ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be retrieved. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_by_id_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact.Fact] #
Get a fact by ID
Returns the fact with the given ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be retrieved. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_by_id_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], fact_id: Annotated[str, Field(strict=True, description='the ID for the fact to be retrieved.')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a fact by ID
Returns the fact with the given ID
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
fact_id (str) – the ID for the fact to be retrieved. (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact_type_definition.FactTypeDefinition #
Get a fact type definition
Get the definition of the given fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact_type_definition.FactTypeDefinition] #
Get a fact type definition
Get the definition of the given fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a fact type definition
Get the definition of the given fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo #
Get an identity provider’s details
Retrieve detailed information and configuration of an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo] #
Get an identity provider’s details
Retrieve detailed information and configuration of an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get an identity provider’s details
Retrieve detailed information and configuration of an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.principal_info.PrincipalInfo #
Get identity provider principal details
Retrieve detailed information about an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.principal_info.PrincipalInfo] #
Get identity provider principal details
Retrieve detailed information about an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get identity provider principal details
Retrieve detailed information about an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principals(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_principal_list.DomainIdentityProviderPrincipalList #
Get an identity provider’s principals
Retrieve a list of principals for an identity provider
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principals_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_principal_list.DomainIdentityProviderPrincipalList] #
Get an identity provider’s principals
Retrieve a list of principals for an identity provider
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_identity_provider_principals_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get an identity provider’s principals
Retrieve a list of principals for an identity provider
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain.Domain #
Get a peer domain by nickname or alias
Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames
- Parameters:
domain_id (str) – (required)
nickname (str) –
alias (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain.Domain] #
Get a peer domain by nickname or alias
Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames
- Parameters:
domain_id (str) – (required)
nickname (str) –
alias (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], nickname: pydantic.StrictStr | None = None, alias: Optional[Annotated[str, Field(strict=True)]] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a peer domain by nickname or alias
Retrieve the details of a domain that is configured as a peer of this domain, by using its alias or one of its nicknames
- Parameters:
domain_id (str) – (required)
nickname (str) –
alias (str) –
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer_config(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_peer_config.DomainPeerConfig #
Get peer configuration
Get the configuration for this peer.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer_config_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_peer_config.DomainPeerConfig] #
Get peer configuration
Get the configuration for this peer.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_peer_config_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get peer configuration
Get the configuration for this peer.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_private_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_private_info.DomainPrivateInfo #
Get the summary info for a Domain
Returns a Domain’s summary information.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_private_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_private_info.DomainPrivateInfo] #
Get the summary info for a Domain
Returns a Domain’s summary information.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_private_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the summary info for a Domain
Returns a Domain’s summary information.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_public_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_public_info.DomainPublicInfo #
Get the public info for a Domain
Returns a Domain’s summary information. This endpoint does not require authorization
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_public_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_public_info.DomainPublicInfo] #
Get the public info for a Domain
Returns a Domain’s summary information. This endpoint does not require authorization
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_public_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the public info for a Domain
Returns a Domain’s summary information. This endpoint does not require authorization
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.read_context_details.ReadContextDetails #
Get a read context
Returns information about a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.read_context_details.ReadContextDetails] #
Get a read context
Returns information about a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a read context
Returns information about a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_settings(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_settings.DomainSettings #
Get the domain settings
Get the domain settings object
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_settings_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_settings.DomainSettings] #
Get the domain settings
Get the domain settings object
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_settings_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain settings
Get the domain settings object
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_status(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_status.DomainStatus #
Get the domain status
The domain status object contains important notifications for administrators of the domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_status_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_status.DomainStatus] #
Get the domain status
The domain status object contains important notifications for administrators of the domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_status_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain status
The domain status object contains important notifications for administrators of the domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_tag_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_tag_info_results.DomainTagInfoResults #
Get an ordered list of the top 100 tags.
Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_tag_info_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_tag_info_results.DomainTagInfoResults] #
Get an ordered list of the top 100 tags.
Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_tag_info_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get an ordered list of the top 100 tags.
Get an ordered list of the top 100 tags. The ordering is tags emitted by hooks, tags referenced in read context rules, Capsule and span tags that appear in the capsule manifest, ordered by number of capsules there are having that tag in it.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_write_context_regex_rules(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) List[antimatter.client.models.write_context_regex_rule.WriteContextRegexRule] #
domain_get_write_context_regex_rules
Get a full listing of all regex rules for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_write_context_regex_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[List[antimatter.client.models.write_context_regex_rule.WriteContextRegexRule]] #
domain_get_write_context_regex_rules
Get a full listing of all regex rules for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_get_write_context_regex_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
domain_get_write_context_regex_rules
Get a full listing of all regex rules for the context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_insert_identity_provider_principal200_response.DomainInsertIdentityProviderPrincipal200Response #
Create a new principal for the provider
Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_insert_identity_provider_principal200_response.DomainInsertIdentityProviderPrincipal200Response] #
Create a new principal for the provider
Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_principal_params: antimatter.client.models.domain_identity_provider_principal_params.DomainIdentityProviderPrincipalParams, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create a new principal for the provider
Create a new principal for the provider. Note that the identityProviderName must refer to an existing identity provider or the response will be a 400.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_principal_params (DomainIdentityProviderPrincipalParams) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_write_context_regex_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_insert_write_context_regex_rule200_response.DomainInsertWriteContextRegexRule200Response #
Insert a write context regex rule
Create a new regex rule for a write context.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_regex_rule (WriteContextRegexRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_write_context_regex_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_insert_write_context_regex_rule200_response.DomainInsertWriteContextRegexRule200Response] #
Insert a write context regex rule
Create a new regex rule for a write context.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_regex_rule (WriteContextRegexRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_insert_write_context_regex_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_regex_rule: antimatter.client.models.write_context_regex_rule.WriteContextRegexRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Insert a write context regex rule
Create a new regex rule for a write context.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_regex_rule (WriteContextRegexRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_capsules(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_list.CapsuleList #
Get capsule list
Get information about capsules
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.
sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.
start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.
ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_capsules_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_list.CapsuleList] #
Get capsule list
Get information about capsules
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.
sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.
start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.
ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_capsules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, span_tags: Annotated[Optional[pydantic.StrictStr], Field(description='the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, sort_on: Annotated[Optional[pydantic.StrictStr], Field(description='the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored. ')] = None, start_after: Annotated[Optional[pydantic.StrictStr], Field(description='the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored. ')] = None, ascending: Annotated[Optional[pydantic.StrictBool], Field(description='the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get capsule list
Get information about capsules
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
span_tags (str) – the span tags you would like to filter on. This accepts a tag key only and will return all span tag key results matching the provided tag key. If not specified, this field is ignored.
sort_on (str) – the capsule field you would like to sort on. This accepts the field only and will return results ordered on the provided field. If not specified, this field is ignored.
start_after (str) – the pagination key you would like to retrieve results after. This accepts the pagination key only and works in combination with the sort_on parameter to return records strictly after the provided pagination key. If not specified, this field is ignored.
ascending (bool) – the defines whether a sorted result should be order ascending. This accepts a boolean value and when true will work in combination with the sort_on and start_after parameters to return values in ascending order. If not specified, this field is ignored and treated as false.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) List[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem] #
List all external root encryption keys.
List all external root encryption keys for the domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[List[antimatter.client.models.root_encryption_key_item.RootEncryptionKeyItem]] #
List all external root encryption keys.
List all external root encryption keys for the domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List all external root encryption keys.
List all external root encryption keys for the domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_fact_types(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_fact_list.DomainFactList #
List the domain’s fact types
Get a list of the registered fact types in this domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_fact_types_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_fact_list.DomainFactList] #
List the domain’s fact types
Get a list of the registered fact types in this domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_fact_types_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List the domain’s fact types
Get a list of the registered fact types in this domain
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_facts(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact_list.FactList #
Get facts for a type
Get the facts corresponding to a fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_facts_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact_list.FactList] #
Get facts for a type
Get the facts corresponding to a fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_facts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get facts for a type
Get the facts corresponding to a fact type
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_hooks(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_hooks_list.DomainHooksList #
Lists available hooks
Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_hooks_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_hooks_list.DomainHooksList] #
Lists available hooks
Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_hooks_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Lists available hooks
Get a list of available hooks in this domain. A hook is a data processor, like a PII classifier
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_identity_providers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_list.DomainIdentityProviderList #
Get a summary of the domain’s Identity Providers
Retrieve the domain’s identity providers and a brief overview of their configuration
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_identity_providers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_list.DomainIdentityProviderList] #
Get a summary of the domain’s Identity Providers
Retrieve the domain’s identity providers and a brief overview of their configuration
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_identity_providers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a summary of the domain’s Identity Providers
Retrieve the domain’s identity providers and a brief overview of their configuration
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_peers(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_peer_list.DomainPeerList #
List domain peers
Returns a list of this domains peers
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_peers_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_peer_list.DomainPeerList] #
List domain peers
Returns a list of this domains peers
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_peers_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List domain peers
Returns a list of this domains peers
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_policy_rules(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy.DomainPolicy #
Get the domain policy rules
Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_policy_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy.DomainPolicy] #
Get the domain policy rules
Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_policy_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain policy rules
Get the domain policy rules. These govern which resources in the domain can be interacted with. Note that the peers “bypass” these rules, in that a peer domain can retrieve policy and configuration that has been allowed by peering configuration without needing an allowing domain policy rule, but they cannot access data within this domain.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_read_contexts(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.read_context_list.ReadContextList #
List domain read contexts
List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_read_contexts_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.read_context_list.ReadContextList] #
List domain read contexts
List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_read_contexts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List domain read contexts
List the domain read contexts. If a user has view permissions on this resource, they may list all read contexts, even if they do not have view, edit or use permissions on some of the read contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_resources(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_resource_summary.DomainResourceSummary #
Get a summary of access control resource paths
Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_resources_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_resource_summary.DomainResourceSummary] #
Get a summary of access control resource paths
Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_resources_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get a summary of access control resource paths
Gets a list of resource strings that can be used in policy rules, and the set of permissions that you can assign to them
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_write_contexts(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.write_context_list.WriteContextList #
List domain write contexts
List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_write_contexts_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.write_context_list.WriteContextList] #
List domain write contexts
List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_list_write_contexts_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List domain write contexts
List the domain write contexts. If a user has view permissions on this resource, they may list all write contexts, even if they do not have view, edit or use permissions on some of the write contexts in the list.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_open_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.capsule_open_response.CapsuleOpenResponse #
Open a capsule for reading
Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
read_context (str) – (required)
capsule_open_request (CapsuleOpenRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_open_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.capsule_open_response.CapsuleOpenResponse] #
Open a capsule for reading
Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
read_context (str) – (required)
capsule_open_request (CapsuleOpenRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_open_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], read_context: Annotated[str, Field(strict=True)], capsule_open_request: antimatter.client.models.capsule_open_request.CapsuleOpenRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Open a capsule for reading
Given the encrypted DEK for this capsule, get back the decrypted DEK. contains the read context
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
read_context (str) – (required)
capsule_open_request (CapsuleOpenRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_patch_settings(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_settings.DomainSettings #
Update the domain settings
Applies the given patch to the domain settings. The user must have permissions on all resources the patch references
- Parameters:
domain_id (str) – (required)
domain_settings_patch (DomainSettingsPatch) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_patch_settings_with_http_info(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_settings.DomainSettings] #
Update the domain settings
Applies the given patch to the domain settings. The user must have permissions on all resources the patch references
- Parameters:
domain_id (str) – (required)
domain_settings_patch (DomainSettingsPatch) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_patch_settings_without_preload_content(domain_id: Annotated[str, Field(strict=True)], domain_settings_patch: antimatter.client.models.domain_settings_patch.DomainSettingsPatch, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update the domain settings
Applies the given patch to the domain settings. The user must have permissions on all resources the patch references
- Parameters:
domain_id (str) – (required)
domain_settings_patch (DomainSettingsPatch) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_policy_flush(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Flush the policy cache
Flush the policy cache so that changes to permissions take effect
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_policy_flush_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Flush the policy cache
Flush the policy cache so that changes to permissions take effect
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_policy_flush_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Flush the policy cache
Flush the policy cache so that changes to permissions take effect
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_capability(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Create or update a capability
Create or update a capability. If you want to return an error if the capability already existed, set createonly=true
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
new_capability_definition (NewCapabilityDefinition) – (required)
createonly (bool) – return an error if the capability already existed
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_capability_with_http_info(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Create or update a capability
Create or update a capability. If you want to return an error if the capability already existed, set createonly=true
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
new_capability_definition (NewCapabilityDefinition) – (required)
createonly (bool) – return an error if the capability already existed
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_capability_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capability: Annotated[str, Field(strict=True, description='the name for this capability, like "admin"')], new_capability_definition: antimatter.client.models.new_capability_definition.NewCapabilityDefinition, createonly: Annotated[Optional[pydantic.StrictBool], Field(description='return an error if the capability already existed')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create or update a capability
Create or update a capability. If you want to return an error if the capability already existed, set createonly=true
- Parameters:
domain_id (str) – (required)
capability (str) – the name for this capability, like “admin” (required)
new_capability_definition (NewCapabilityDefinition) – (required)
createonly (bool) – return an error if the capability already existed
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_fact_type(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Create a fact type
Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact_type_definition (NewFactTypeDefinition) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_fact_type_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Create a fact type
Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact_type_definition (NewFactTypeDefinition) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_put_fact_type_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact_type_definition: antimatter.client.models.new_fact_type_definition.NewFactTypeDefinition, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create a fact type
Facts are used to store ancillary information that helps express domain policy rules and read context configuration rules. This endpoint allows you to register a new fact type. To create a fact of a given type, use /domains/{domainID}/control/facts/{factType}/new
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact_type_definition (NewFactTypeDefinition) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.access_log_results.AccessLogResults #
Get the domain data-plane audit log
Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.access_log_results.AccessLogResults] #
Get the domain data-plane audit log
Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain data-plane audit log
Query the data access log for this domain. This contains all operations interacting with capsules within this domain. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log_single_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.access_log_results.AccessLogResults #
Get the access log for a single capsule
Query the data-plane access log for this capsule. Results are returned in reverse chronological order.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log_single_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.access_log_results.AccessLogResults] #
Get the access log for a single capsule
Query the data-plane access log for this capsule. Results are returned in reverse chronological order.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_access_log_single_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, location: Annotated[Optional[pydantic.StrictStr], Field(description='the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, location_prefixed: Annotated[Optional[pydantic.StrictBool], Field(description='a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false. ')] = None, operation_type: Annotated[Optional[pydantic.StrictStr], Field(description='the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored. ')] = None, allowed_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored. ')] = None, redacted_or_tokenized_tag: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the access log for a single capsule
Query the data-plane access log for this capsule. Results are returned in reverse chronological order.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
location (str) – the location you would like to filter on. This is a matched filter and will return results starting with the provided string. If not specified, this field is ignored.
location_prefixed (bool) – a boolean indicator to indicate that the location you provided is a prefix or not. If this is set to true, then the filter provided in location is treated as a prefix. If not specified, this is treated as false.
operation_type (str) – the operation you would like to filter on. This will filter on the provided operation type and return all results using the provided operation type. If not specified, this field is ignored.
allowed_tag (str) – the allow tag key you would like to filter on. This accepts tag key only and will return all allowed tag results matching the provided tag key. If not specified, this field is ignored.
redacted_or_tokenized_tag (str) – the redacted or tokenized tag key you would like ot filter on. This accepts a tag key only and will return all redacted and tokenized tag key results matching the provided tag key. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_control_log(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_control_log_results.DomainControlLogResults #
Get the domain control-plane audit log
Query the domain control-plane audit log. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.
description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_control_log_with_http_info(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_control_log_results.DomainControlLogResults] #
Get the domain control-plane audit log
Query the domain control-plane audit log. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.
description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_query_control_log_without_preload_content(domain_id: Annotated[str, Field(strict=True)], start_date: Annotated[Optional[datetime.datetime], Field(description='the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set. ')] = None, end_date: Annotated[Optional[datetime.datetime], Field(description='the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time. ')] = None, num_results: Annotated[Optional[Annotated[int, Field(le=2000, strict=True, ge=10)]], Field(description='the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned "has_more" field to determine if there are more records available matching the filters and time range. ')] = None, start_from_id: Annotated[Optional[Annotated[str, Field(strict=True)]], Field(description='which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query. ')] = None, session: Annotated[Optional[pydantic.StrictStr], Field(description='the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored. ')] = None, url: Annotated[Optional[pydantic.StrictStr], Field(description='the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored. ')] = None, description: Annotated[Optional[pydantic.StrictStr], Field(description='the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored. ')] = None, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Get the domain control-plane audit log
Query the domain control-plane audit log. Results are returned in reverse chronological order
- Parameters:
domain_id (str) – (required)
start_date (datetime) – the earlier date of the date range. As results are returned in reverse chronological order, this date corresponds with the end of the result set.
end_date (datetime) – the later date of the date range. As results are returned in reverse chronological order, this date corresponds with the beginning of the result set. If not specified, defaults to the current time.
num_results (int) – the number of results you would like returned. You may get more or less than this number, and it does not indicate anything about the availability of more records. Consult the returned “has_more” field to determine if there are more records available matching the filters and time range.
start_from_id (str) – which id to start from. This must be an ID of a record previously returned. The first result will have an ID less than this ID (because results are in reverse chronological order, and it is non-inclusive). You should omit this field if you are not continuing a paginated query.
session (str) – the session you would like to filter on. This will return results for only the provided session. If not specified, this field is ignored.
url (str) – the URL you would like to filter on. This is a prefix matched filter and will return results starting with the provided string. If not specified, this field is ignored.
description (str) – the description you would like to filter on. This is an in matched filter and will return results that contain the provided string. If not specified, this field is ignored.
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_renumber_policy_rules(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_policy.DomainPolicy #
Re-assign rule numbers
Re-assign rule priority numbers to integer multiples of 10
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_renumber_policy_rules_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_policy.DomainPolicy] #
Re-assign rule numbers
Re-assign rule priority numbers to integer multiples of 10
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_renumber_policy_rules_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Re-assign rule numbers
Re-assign rule priority numbers to integer multiples of 10
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_rotate_root_encryption_keys(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.rotate_key_encryption_key_response.RotateKeyEncryptionKeyResponse #
Re-encrypt key encryption keys with active root encryption key.
Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.
- Parameters:
domain_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_rotate_root_encryption_keys_with_http_info(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.rotate_key_encryption_key_response.RotateKeyEncryptionKeyResponse] #
Re-encrypt key encryption keys with active root encryption key.
Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.
- Parameters:
domain_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_rotate_root_encryption_keys_without_preload_content(domain_id: Annotated[str, Field(strict=True)], body: Dict[str, Any], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Re-encrypt key encryption keys with active root encryption key.
Collects key encryption keys not encrypted with the current active root encryption key, decrypts them with their original root encryption key, and then encrypts them with root encryption key. This is a batched operation and “has_more” will indicate whether there more key encryption keys that can be rotated.
- Parameters:
domain_id (str) – (required)
body (object) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_seal_capsule(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Seal a capsule
Seal this capsule, if it’s unsealed. Requires capsule create token
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
capsule_seal_request (CapsuleSealRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_seal_capsule_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Seal a capsule
Seal this capsule, if it’s unsealed. Requires capsule create token
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
capsule_seal_request (CapsuleSealRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_seal_capsule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], capsule_seal_request: antimatter.client.models.capsule_seal_request.CapsuleSealRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Seal a capsule
Seal this capsule, if it’s unsealed. Requires capsule create token
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
capsule_seal_request (CapsuleSealRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_set_active_external_root_encryption_key(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Set the root encryption key ID that should be used.
This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.
- Parameters:
domain_id (str) – (required)
active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_set_active_external_root_encryption_key_with_http_info(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Set the root encryption key ID that should be used.
This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.
- Parameters:
domain_id (str) – (required)
active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_set_active_external_root_encryption_key_without_preload_content(domain_id: Annotated[str, Field(strict=True)], active_root_encryption_key_id: antimatter.client.models.active_root_encryption_key_id.ActiveRootEncryptionKeyID, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Set the root encryption key ID that should be used.
This will update the active root encryption key for a domain that should be used for root encryption key cryptographic operations.
- Parameters:
domain_id (str) – (required)
active_root_encryption_key_id (ActiveRootEncryptionKeyID) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_identity_provider_principal(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update identity provider principal capabilities
Update capabilities for an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
capability_list (CapabilityList) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_identity_provider_principal_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update identity provider principal capabilities
Update capabilities for an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
capability_list (CapabilityList) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_identity_provider_principal_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], principal_id: Annotated[str, Field(strict=True)], capability_list: antimatter.client.models.capability_list.CapabilityList, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update identity provider principal capabilities
Update capabilities for an identity provider principal.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
principal_id (str) – (required)
capability_list (CapabilityList) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_peer(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update peer configuration
Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
domain_peer_config (DomainPeerConfig) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_peer_with_http_info(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update peer configuration
Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
domain_peer_config (DomainPeerConfig) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_peer_without_preload_content(domain_id: Annotated[str, Field(strict=True)], peer_domain_id: Annotated[str, Field(strict=True)], domain_peer_config: antimatter.client.models.domain_peer_config.DomainPeerConfig, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update peer configuration
Create or update the configuration for this peer. Please note, if the configuration already exists, it is updated to reflect the values in the request. This will include setting the fields to their default value if not supplied.
- Parameters:
domain_id (str) – (required)
peer_domain_id (str) – (required)
domain_peer_config (DomainPeerConfig) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_policy_rule(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update a domain policy rule
Update a domain policy rule
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_policy_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update a domain policy rule
Update a domain policy rule
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_policy_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], domain_policy_rule: antimatter.client.models.domain_policy_rule.DomainPolicyRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update a domain policy rule
Update a domain policy rule
- Parameters:
domain_id (str) – (required)
rule_id (str) – (required)
domain_policy_rule (DomainPolicyRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_read_context_rule(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update a read context configuration rule
Update a read context configuration rule. The rule must already exist
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_read_context_rule_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update a read context configuration rule
Update a read context configuration rule. The rule must already exist
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_update_read_context_rule_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], rule_id: Annotated[str, Field(strict=True)], new_read_context_config_rule: antimatter.client.models.new_read_context_config_rule.NewReadContextConfigRule, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update a read context configuration rule
Update a read context configuration rule. The rule must already exist
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
rule_id (str) – (required)
new_read_context_config_rule (NewReadContextConfigRule) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_capsule_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Upsert capsule-scope tags
Upsert capsule-level tags. This is permitted even after a capsule is sealed.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
tag (List[Tag]) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_capsule_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Upsert capsule-scope tags
Upsert capsule-level tags. This is permitted even after a capsule is sealed.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
tag (List[Tag]) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_capsule_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], tag: List[antimatter.client.models.tag.Tag], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Upsert capsule-scope tags
Upsert capsule-level tags. This is permitted even after a capsule is sealed.
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
tag (List[Tag]) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_fact(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.fact.Fact #
Upsert a fact
Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact (NewFact) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_fact_with_http_info(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.fact.Fact] #
Upsert a fact
Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact (NewFact) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_fact_without_preload_content(domain_id: Annotated[str, Field(strict=True)], fact_type: Annotated[str, Field(strict=True, description='the "type name" for this fact, like "has_role"')], new_fact: antimatter.client.models.new_fact.NewFact, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Upsert a fact
Create a new fact. The fact type must have been previously registered using /domains/{domainID}/control/facts/{factType}. If an identical fact exists (having the same value for all fields), this call is a no-op
- Parameters:
domain_id (str) – (required)
fact_type (str) – the “type name” for this fact, like “has_role” (required)
new_fact (NewFact) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_identity_provider(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo #
Create/Update an identity provider
Create or configure an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_details (DomainIdentityProviderDetails) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_identity_provider_with_http_info(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo] #
Create/Update an identity provider
Create or configure an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_details (DomainIdentityProviderDetails) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_identity_provider_without_preload_content(domain_id: Annotated[str, Field(strict=True)], identity_provider_name: Annotated[str, Field(strict=True)], domain_identity_provider_details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Create/Update an identity provider
Create or configure an identity provider.
- Parameters:
domain_id (str) – (required)
identity_provider_name (str) – (required)
domain_identity_provider_details (DomainIdentityProviderDetails) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_read_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update or create a read context
Update or create a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_read_context (AddReadContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_read_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update or create a read context
Update or create a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_read_context (AddReadContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_read_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_read_context: antimatter.client.models.add_read_context.AddReadContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update or create a read context
Update or create a read context
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_read_context (AddReadContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_span_tags(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Upsert span-scope tags
Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
upsert_span_tags_request (UpsertSpanTagsRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_span_tags_with_http_info(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Upsert span-scope tags
Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
upsert_span_tags_request (UpsertSpanTagsRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_span_tags_without_preload_content(domain_id: Annotated[str, Field(strict=True)], capsule_id: Annotated[str, Field(strict=True)], upsert_span_tags_request: antimatter.client.models.upsert_span_tags_request.UpsertSpanTagsRequest, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Upsert span-scope tags
Upsert span tag rollups. This is only permitted when a capsule is not sealed. It requires a special “capsule owner” token that is returned by create capsule. Note that the rollup calculations must be done on the client side. This method only permits storing the entire rollup, not aggregating serverside. This is idempotent
- Parameters:
domain_id (str) – (required)
capsule_id (str) – (required)
upsert_span_tags_request (UpsertSpanTagsRequest) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Upsert a write context
Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_write_context (AddWriteContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Upsert a write context
Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_write_context (AddWriteContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], add_write_context: antimatter.client.models.add_write_context.AddWriteContext, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Upsert a write context
Create or update an existing write context. If the config is omitted, it will be left as-is (existing write contexts) or created as blank (new write contexts)
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
add_write_context (AddWriteContext) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context_configuration(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Update a write context configuration
Update a write context configuration. The write context must already exist.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_config_info (WriteContextConfigInfo) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context_configuration_with_http_info(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Update a write context configuration
Update a write context configuration. The write context must already exist.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_config_info (WriteContextConfigInfo) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- domain_upsert_write_context_configuration_without_preload_content(domain_id: Annotated[str, Field(strict=True)], context_name: Annotated[str, Field(strict=True)], write_context_config_info: antimatter.client.models.write_context_config_info.WriteContextConfigInfo, _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Update a write context configuration
Update a write context configuration. The write context must already exist.
- Parameters:
domain_id (str) – (required)
context_name (str) – (required)
write_context_config_info (WriteContextConfigInfo) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_add(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Adds to starred domains
Adds the domain to the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_add_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Adds to starred domains
Adds the domain to the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_add_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Adds to starred domains
Adds the domain to the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_list(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.models.starred_domain_list.StarredDomainList #
List the user’s starred domains
Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.
- Parameters:
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_list_with_http_info(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[antimatter.client.models.starred_domain_list.StarredDomainList] #
List the user’s starred domains
Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.
- Parameters:
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_list_without_preload_content(_request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
List the user’s starred domains
Returns a list of domains that the user has starred. This is a list of domain IDs, not domain names. The user must be authenticated to call this method.
- Parameters:
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_remove(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) None #
Removes from starred domains
Removes the domain from the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_remove_with_http_info(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.api_response.ApiResponse[None] #
Removes from starred domains
Removes the domain from the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- starred_domain_remove_without_preload_content(domain_id: Annotated[str, Field(strict=True)], _request_timeout: Union[None, Annotated[pydantic.StrictFloat, Field(gt=0)], Tuple[Annotated[pydantic.StrictFloat, Field(gt=0)], Annotated[pydantic.StrictFloat, Field(gt=0)]]] = None, _request_auth: Dict[pydantic.StrictStr, Any] | None = None, _content_type: pydantic.StrictStr | None = None, _headers: Dict[pydantic.StrictStr, Any] | None = None, _host_index: Annotated[pydantic.StrictInt, Field(ge=0, le=0)] = 0) antimatter.client.rest.RESTResponseType #
Removes from starred domains
Removes the domain from the list of starred domains for the user.
- Parameters:
domain_id (str) – (required)
_request_timeout (int, tuple(int, int), optional) – timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts.
_request_auth (dict, optional) – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
_content_type (str, Optional) – force content-type for the request.
_headers (dict, optional) – set to override the headers for a single request; this effectively ignores the headers in the spec for a single request.
_host_index (int, optional) – set to override the host_index for a single request; this effectively ignores the host_index in the spec for a single request.
- Returns:
Returns the result object.
- class antimatter.client.ApiResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
,Generic
[T
]API response object
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- status_code: pydantic.StrictInt#
- headers: Dict[pydantic.StrictStr, pydantic.StrictStr] | None#
- data: T#
- raw_data: pydantic.StrictBytes#
- model_config#
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ApiClient(configuration=None, header_name=None, header_value=None, cookie=None)#
Generic API client for OpenAPI client library builds.
OpenAPI generic API client. This client handles the client- server communication, and is invariant across implementations. Specifics of the methods and models for each application are generated from the OpenAPI templates.
- Parameters:
configuration – .Configuration object for this client
header_name – a header to pass when making calls to the API.
header_value – a header value to pass when making calls to the API.
cookie – a cookie to include in the header when making calls to the API
- property user_agent#
User agent for this API client
- PRIMITIVE_TYPES = ()#
- NATIVE_TYPES_MAPPING#
- set_default_header(header_name, header_value)#
- classmethod get_default()#
Return new instance of ApiClient.
This method returns newly created, based on default constructor, object of ApiClient class or returns a copy of default ApiClient.
- Returns:
The ApiClient object.
- classmethod set_default(default)#
Set default instance of ApiClient.
It stores default ApiClient.
- Parameters:
default – object of ApiClient.
- param_serialize(method, resource_path, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, auth_settings=None, collection_formats=None, _host=None, _request_auth=None) Tuple #
Builds the HTTP request params needed by the request. :param method: Method to call. :param resource_path: Path to method endpoint. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be
placed in the request header.
- Parameters:
body – Request body.
dict (files) – Request post form parameters, for application/x-www-form-urlencoded, multipart/form-data.
list (auth_settings) – Auth Settings names for the request.
dict – key -> filename, value -> filepath, for multipart/form-data.
collection_formats – dict of collection formats for path, query, header, and post parameters.
_request_auth – set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request.
- Returns:
tuple of form (path, http_method, query_params, header_params, body, post_params, files)
- call_api(method, url, header_params=None, body=None, post_params=None, _request_timeout=None) antimatter.client.rest.RESTResponse #
Makes the HTTP request (synchronous) :param method: Method to call. :param url: Path to method endpoint. :param header_params: Header parameters to be
placed in the request header.
- Parameters:
body – Request body.
dict (post_params) – Request post form parameters, for application/x-www-form-urlencoded, multipart/form-data.
_request_timeout – timeout setting for this request.
- Returns:
RESTResponse
- response_deserialize(response_data: antimatter.client.rest.RESTResponse = None, response_types_map=None) antimatter.client.api_response.ApiResponse #
Deserializes response into an object. :param response_data: RESTResponse object to be deserialized. :param response_types_map: dict of response types. :return: ApiResponse
- sanitize_for_serialization(obj)#
Builds a JSON POST object.
If obj is None, return None. If obj is str, int, long, float, bool, return directly. If obj is datetime.datetime, datetime.date
convert to string in iso8601 format.
If obj is list, sanitize each element in the list. If obj is dict, return the dict. If obj is OpenAPI model, return the properties dict.
- Parameters:
obj – The data to serialize.
- Returns:
The serialized form of data.
- deserialize(response_text, response_type)#
Deserializes response into an object.
- Parameters:
response – RESTResponse object to be deserialized.
response_type – class literal for deserialized object, or string of class name.
- Returns:
deserialized object.
- parameters_to_tuples(params, collection_formats)#
Get parameters as list of tuples, formatting collections.
- Parameters:
params – Parameters as dict or list of two-tuples
collection_formats (dict) – Parameter collection formats
- Returns:
Parameters as list of tuples, collections formatted
- parameters_to_url_query(params, collection_formats)#
Get parameters as list of tuples, formatting collections.
- Parameters:
params – Parameters as dict or list of two-tuples
collection_formats (dict) – Parameter collection formats
- Returns:
URL query string (e.g. a=Hello%20World&b=123)
- files_parameters(files=None)#
Builds form parameters.
- Parameters:
files – File parameters.
- Returns:
Form parameters with files.
- select_header_accept(accepts: List[str]) str | None #
Returns Accept based on an array of accepts provided.
- Parameters:
accepts – List of headers.
- Returns:
Accept (e.g. application/json).
- select_header_content_type(content_types)#
Returns Content-Type based on an array of content_types provided.
- Parameters:
content_types – List of content-types.
- Returns:
Content-Type (e.g. application/json).
- update_params_for_auth(headers, queries, auth_settings, resource_path, method, body, request_auth=None) None #
Updates header and query params based on authentication setting.
- Parameters:
headers – Header parameters dict to be updated.
queries – Query parameters tuple list to be updated.
auth_settings – Authentication setting identifiers list.
- Resource_path:
A string representation of the HTTP request resource path.
- Method:
A string representation of the HTTP request method.
- Body:
A object representing the body of the HTTP request.
The object type is the return value of sanitize_for_serialization(). :param request_auth: if set, the provided settings will
override the token in the configuration.
- class antimatter.client.Configuration(host=None, api_key=None, api_key_prefix=None, username=None, password=None, access_token=None, server_index=None, server_variables=None, server_operation_index=None, server_operation_variables=None, ssl_ca_cert=None)#
This class contains various settings of the API client.
- Parameters:
host – Base url.
api_key – Dict to store API key(s). Each entry in the dict specifies an API key. The dict key is the name of the security scheme in the OAS specification. The dict value is the API key secret.
api_key_prefix – Dict to store API prefix (e.g. Bearer). The dict key is the name of the security scheme in the OAS specification. The dict value is an API key prefix when generating the auth data.
username – Username for HTTP basic authentication.
password – Password for HTTP basic authentication.
access_token – Access token.
server_index – Index to servers configuration.
server_variables – Mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before.
server_operation_index – Mapping from operation ID to an index to server configuration.
server_operation_variables – Mapping from operation ID to a mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before.
ssl_ca_cert – str - the path to a file of concatenated CA certificates in PEM format.
- Example:
- property logger_file#
The logger file.
If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler.
- Parameters:
value – The logger_file path.
- Type:
str
- property debug#
Debug status
- Parameters:
value – The debug status, True or False.
- Type:
bool
- property logger_format#
The logger format.
The logger_formatter will be updated when sets logger_format.
- Parameters:
value – The format string.
- Type:
str
- property host#
Return generated host.
- server_operation_index#
Default server index
- server_operation_variables#
Default server variables
- temp_folder_path#
Temp file folder for downloading files
- refresh_api_key_hook#
function hook to refresh API key if expired
- username#
Username for HTTP basic authentication
- password#
Password for HTTP basic authentication
- access_token#
Access token
- logger#
Logging Settings
- logger_format = '%(asctime)s %(levelname)s %(message)s'#
Log format
- logger_stream_handler#
Log stream handler
- logger_file_handler#
Log file handler
- logger_file#
Debug file location
- debug = False#
Debug switch
- verify_ssl = True#
SSL/TLS verification Set this to false to skip verifying SSL certificate when calling API from https server.
- ssl_ca_cert#
Set this to customize the certificate file to verify the peer.
- cert_file#
client certificate file
- key_file#
client key file
- assert_hostname#
Set this to True/False to enable/disable SSL hostname verification.
- tls_server_name#
SSL/TLS Server Name Indication (SNI) Set this to the SNI value expected by the server.
- connection_pool_maxsize#
urllib3 connection pool’s maximum number of connections saved per pool. urllib3 uses 1 connection as default value, but this is not the best value when you are making a lot of possibly parallel requests to the same host, which is often the case here. cpu_count * 5 is used as default value to increase performance.
- proxy#
Proxy URL
- proxy_headers#
Proxy headers
- safe_chars_for_path_param = ''#
Safe chars for path_param
- retries#
Adding retries to override urllib3 default value 3
- socket_options#
Options to pass down to the underlying urllib3 socket
- datetime_format = '%Y-%m-%dT%H:%M:%SZ'#
datetime format
- date_format = '%Y-%m-%d'#
date format
- classmethod set_default(default)#
Set default instance of configuration.
It stores default configuration, which can be returned by get_default_copy method.
- Parameters:
default – object of Configuration
- classmethod get_default_copy()#
Deprecated. Please use get_default instead.
Deprecated. Please use get_default instead.
- Returns:
The configuration object.
- classmethod get_default()#
Return the default configuration.
This method returns newly created, based on default constructor, object of Configuration class or returns a copy of default configuration.
- Returns:
The configuration object.
- get_api_key_with_prefix(identifier, alias=None)#
Gets API key (with prefix if set).
- Parameters:
identifier – The identifier of apiKey.
alias – The alternative identifier of apiKey.
- Returns:
The token for api key authentication.
- get_basic_auth_token()#
Gets HTTP basic authentication header (string).
- Returns:
The token for basic HTTP authentication.
- auth_settings()#
Gets Auth Settings dict for api client.
- Returns:
The Auth Settings information dict.
- to_debug_report()#
Gets the essential information for debugging.
- Returns:
The report for debugging.
- get_host_settings()#
Gets an array of host settings
- Returns:
An array of host settings
- get_host_from_settings(index, variables=None, servers=None)#
Gets host URL based on the index and variables :param index: array index of the host settings :param variables: hash of variable and the corresponding value :param servers: an array of host settings or None :return: URL based on host settings
- exception antimatter.client.OpenApiException#
Bases:
Exception
The base exception class for all OpenAPIExceptions
- class args#
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- exception antimatter.client.ApiTypeError(msg, path_to_item=None, valid_classes=None, key_type=None)#
Bases:
OpenApiException
,TypeError
The base exception class for all OpenAPIExceptions
- class args#
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- exception antimatter.client.ApiValueError(msg, path_to_item=None)#
Bases:
OpenApiException
,ValueError
The base exception class for all OpenAPIExceptions
- class args#
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- exception antimatter.client.ApiKeyError(msg, path_to_item=None)#
Bases:
OpenApiException
,KeyError
The base exception class for all OpenAPIExceptions
- class args#
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- exception antimatter.client.ApiAttributeError(msg, path_to_item=None)#
Bases:
OpenApiException
,AttributeError
The base exception class for all OpenAPIExceptions
- class args#
- class name#
attribute name
- class obj#
object
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- exception antimatter.client.ApiException(status=None, reason=None, http_resp=None, *, body: str | None = None, data: Any | None = None)#
Bases:
OpenApiException
The base exception class for all OpenAPIExceptions
- class args#
- classmethod from_response(*, http_resp, body: str | None, data: Any | None) typing_extensions.Self #
- add_note()#
Exception.add_note(note) – add a note to the exception
- with_traceback()#
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
- class antimatter.client.APIKeyDomainIdentityProviderDetails(/, **data: Any)#
Bases:
pydantic.BaseModel
Detailed information about an API key identity provider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of APIKeyDomainIdentityProviderDetails from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of APIKeyDomainIdentityProviderDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AWSServiceAccountKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
The AWS service account information and details required to use the provided AWS hosted encryption keys for cryptographic operations.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- access_key_id: pydantic.StrictStr#
- secret_access_key: pydantic.StrictStr#
- key_arn: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AWSServiceAccountKeyInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AWSServiceAccountKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AccessLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModel
An individual capsule data-plane log entry. If adding a new read log entry, the session should be omitted (the server will fill it in)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- time: datetime.datetime#
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- capsule: typing_extensions.Annotated[str, Field(strict=True)]#
- operation: pydantic.StrictStr#
- session: typing_extensions.Annotated[str, Field(strict=True)]#
- location: pydantic.StrictStr | None#
- create_info: antimatter.client.models.access_log_entry_create_info.AccessLogEntryCreateInfo | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- domain_validate_regular_expression(value)#
Validates the regular expression
- capsule_validate_regular_expression(value)#
Validates the regular expression
- operation_validate_enum(value)#
Validates the enum
- session_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AccessLogEntry from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AccessLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AccessLogEntryCreateInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
information available if the operation is of type “create”.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- write_context: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- write_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AccessLogEntryCreateInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AccessLogEntryCreateInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AccessLogEntryOpenInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
information available if the operation is of type “open”.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- read_context: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- read_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AccessLogEntryOpenInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AccessLogEntryOpenInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AccessLogEntryReadInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
information available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- parameters: Dict[str, pydantic.StrictStr]#
- read_context: typing_extensions.Annotated[str, Field(strict=True)]#
- allowed_tags: antimatter.client.models.tag_summary.TagSummary#
- redacted_tags: antimatter.client.models.tag_summary.TagSummary#
- tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
- returned_records: pydantic.StrictInt#
- filtered_records: pydantic.StrictInt#
- model_config#
- read_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AccessLogEntryReadInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AccessLogEntryReadInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AccessLogResults(/, **data: Any)#
Bases:
pydantic.BaseModel
The results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- results: List[antimatter.client.models.access_log_entry.AccessLogEntry]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AccessLogResults from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AccessLogResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ActiveRootEncryptionKeyID(/, **data: Any)#
Bases:
pydantic.BaseModel
The stored key ID to use as the active root encryption key.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- key_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ActiveRootEncryptionKeyID from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ActiveRootEncryptionKeyID from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AddCapsuleLogEntryRequest(/, **data: Any)#
Bases:
pydantic.BaseModel
A request to add a capsule log entry
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AddCapsuleLogEntryRequest from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AddCapsuleLogEntryRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AddReadContext(/, **data: Any)#
Bases:
pydantic.BaseModel
A request to add read contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AddReadContext from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AddReadContext from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AddWriteContext(/, **data: Any)#
Bases:
pydantic.BaseModel
Information for adding/updating a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AddWriteContext from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AddWriteContext from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AntimatterDelegatedAWSKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
The details required to use an AWS KMS root encryption key that has been delegated to Antimatter’s AWS account. This will use Antimatter’s service account during set up of the AWS client.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_arn: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AntimatterDelegatedAWSKeyInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AntimatterDelegatedAWSKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AvailableDelegatedRootEncryptionKeyProvider(/, **data: Any)#
Bases:
pydantic.BaseModel
AvailableDelegatedRootEncryptionKeyProvider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- short_name: pydantic.StrictStr#
- description: pydantic.StrictStr#
- account_details: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AvailableDelegatedRootEncryptionKeyProvider from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AvailableRootEncryptionKeyProviders(/, **data: Any)#
Bases:
pydantic.BaseModel
AvailableRootEncryptionKeyProviders
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- providers: List[antimatter.client.models.available_root_encryption_key_providers_providers_inner.AvailableRootEncryptionKeyProvidersProvidersInner] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AvailableRootEncryptionKeyProviders from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AvailableRootEncryptionKeyProviders from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AvailableRootEncryptionKeyProvidersProvidersInner(*args, **kwargs)#
Bases:
pydantic.BaseModel
AvailableRootEncryptionKeyProvidersProvidersInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | None#
- oneof_schema_2_validator: antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
- actual_instance: antimatter.client.models.available_delegated_root_encryption_key_provider.AvailableDelegatedRootEncryptionKeyProvider | antimatter.client.models.available_service_account_root_encryption_key_provider.AvailableServiceAccountRootEncryptionKeyProvider | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.AvailableServiceAccountRootEncryptionKeyProvider(/, **data: Any)#
Bases:
pydantic.BaseModel
AvailableServiceAccountRootEncryptionKeyProvider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- short_name: pydantic.StrictStr#
- description: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of AvailableServiceAccountRootEncryptionKeyProvider from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.Capability(/, **data: Any)#
Bases:
pydantic.BaseModel
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of Capability from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of Capability from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapabilityDefinition(/, **data: Any)#
Bases:
pydantic.BaseModel
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- unary: pydantic.StrictBool#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapabilityDefinition from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapabilityDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapabilityDefinitionList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of capability definitions
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability_definition.CapabilityDefinition]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapabilityDefinitionList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapabilityDefinitionList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapabilityList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of capabilities
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapabilityList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapabilityList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapabilityRule(/, **data: Any)#
Bases:
pydantic.BaseModel
A rule that refers to a domain identity capability. These rules are ANDed together
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- match_expressions: List[antimatter.client.models.capability_rule_match_expressions_inner.CapabilityRuleMatchExpressionsInner] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapabilityRule from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapabilityRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapabilityRuleMatchExpressionsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
CapabilityRuleMatchExpressionsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- operator: pydantic.StrictStr#
- values: List[pydantic.StrictStr]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- operator_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapabilityRuleMatchExpressionsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapabilityRuleMatchExpressionsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleCreateResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
The response for the creation of a new capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- data_key: pydantic.StrictBytes | pydantic.StrictStr#
- encrypted_data_key: pydantic.StrictBytes | pydantic.StrictStr#
- key_encryption_key_id: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- write_context_configuration: antimatter.client.models.write_context_config_info.WriteContextConfigInfo#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleCreateResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleCreateResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
A summary of the capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- size: pydantic.StrictInt#
- created: datetime.datetime#
- page_key: pydantic.StrictStr | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- domain_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleList(/, **data: Any)#
Bases:
pydantic.BaseModel
List of capsules
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- results: List[antimatter.client.models.capsule_info.CapsuleInfo]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleOpenRequest(/, **data: Any)#
Bases:
pydantic.BaseModel
A request to open (decrypt) a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- encrypted_dek: pydantic.StrictBytes | pydantic.StrictStr#
- key_id: pydantic.StrictInt#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleOpenRequest from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleOpenRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleOpenResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
Contains key material for a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- decryption_key: pydantic.StrictBytes | pydantic.StrictStr#
- read_context_configuration: antimatter.client.models.capsule_open_response_read_context_configuration.CapsuleOpenResponseReadContextConfiguration#
- open_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleOpenResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleOpenResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleOpenResponseReadContextConfiguration(/, **data: Any)#
Bases:
pydantic.BaseModel
the material required for enacting read context configuration (e.g. wasm stuff)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- policy_assembly: pydantic.StrictBytes | pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleOpenResponseReadContextConfiguration from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleOpenResponseReadContextConfiguration from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CapsuleSealRequest(/, **data: Any)#
Bases:
pydantic.BaseModel
Information applied when sealing a capsule (marking it as complete)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- size: pydantic.StrictInt#
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CapsuleSealRequest from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CapsuleSealRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ConflictError(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned when attempting to delete a resource that is still in use by other resources
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ConflictError from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ConflictError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.CreatePeerDomain(/, **data: Any)#
Bases:
pydantic.BaseModel
Configuration options for creating a new subdomain.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
- import_alias_for_parent: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- import_alias_for_child: typing_extensions.Annotated[str, Field(strict=True)]#
- display_name_for_parent: Optional[typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]]#
- display_name_for_child: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
- link_all: pydantic.StrictBool | None#
- link_identity_providers: pydantic.StrictBool | None#
- link_facts: pydantic.StrictBool | None#
- link_read_contexts: pydantic.StrictBool | None#
- link_write_contexts: pydantic.StrictBool | None#
- link_capabilities: pydantic.StrictBool | None#
- link_domain_policy: pydantic.StrictBool | None#
- link_capsule_access_log: pydantic.StrictBool | None#
- link_control_log: pydantic.StrictBool | None#
- link_capsule_manifest: pydantic.StrictBool | None#
- model_config#
- import_alias_for_parent_validate_regular_expression(value)#
Validates the regular expression
- import_alias_for_child_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of CreatePeerDomain from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of CreatePeerDomain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DataTaggingHookInput(/, **data: Any)#
Bases:
pydantic.BaseModel
A request to classify PII in a batch of records
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- records: List[antimatter.client.models.data_tagging_hook_input_records_inner.DataTaggingHookInputRecordsInner]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DataTaggingHookInput from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DataTaggingHookInput from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DataTaggingHookInputRecordsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DataTaggingHookInputRecordsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- elements: List[antimatter.client.models.data_tagging_hook_input_records_inner_elements_inner.DataTaggingHookInputRecordsInnerElementsInner]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DataTaggingHookInputRecordsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DataTaggingHookInputRecordsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DataTaggingHookInputRecordsInnerElementsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DataTaggingHookInputRecordsInnerElementsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- content: pydantic.StrictStr#
- path: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DataTaggingHookInputRecordsInnerElementsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DataTaggingHookResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
A response from invoking a data tagging hook
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- version: typing_extensions.Annotated[str, Field(strict=True)]#
- records: List[antimatter.client.models.data_tagging_hook_response_records_inner.DataTaggingHookResponseRecordsInner]#
- model_config#
- version_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DataTaggingHookResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DataTaggingHookResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DataTaggingHookResponseRecordsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DataTaggingHookResponseRecordsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- elements: List[antimatter.client.models.tag_set.TagSet]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DataTaggingHookResponseRecordsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DataTaggingHookResponseRecordsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DeleteTags(/, **data: Any)#
Bases:
pydantic.BaseModel
DeleteTags
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- names: List[pydantic.StrictStr] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DeleteTags from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DeleteTags from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.Domain(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of Domain from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of Domain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainAddReadContextRule200Response(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainAddReadContextRule200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainAddReadContextRule200Response from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainAddReadContextRule200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainAuthenticate(/, **data: Any)#
Bases:
pydantic.BaseModel
An object containing external credentials that can be transmuted into a domain identity token
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- token: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainAuthenticate from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainAuthenticate from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainAuthenticateResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
A domain identity token
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- token: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainAuthenticateResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainAuthenticateResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainContactIssueVerifyRequest(/, **data: Any)#
Bases:
pydantic.BaseModel
Parameters to request new validation request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainContactIssueVerifyRequest from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainContactIssueVerifyRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainControlLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModel
Results for a domain control log query
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- time: datetime.datetime#
- session: typing_extensions.Annotated[str, Field(strict=True)]#
- url: pydantic.StrictStr#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=100)]#
- description: Dict[str, pydantic.StrictStr]#
- model_config#
- domain_validate_regular_expression(value)#
Validates the regular expression
- id_validate_regular_expression(value)#
Validates the regular expression
- session_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainControlLogEntry from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainControlLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainControlLogResults(/, **data: Any)#
Bases:
pydantic.BaseModel
The results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainControlLogResults from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainControlLogResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainFactList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of defined fact types in the domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- fact_types: List[antimatter.client.models.fact_type_definition.FactTypeDefinition]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainFactList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainFactList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainHooksList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of available hooks in this domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hooks: List[antimatter.client.models.domain_hooks_list_hooks_inner.DomainHooksListHooksInner] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainHooksList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainHooksList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainHooksListHooksInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainHooksListHooksInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- url: pydantic.StrictStr#
- version: pydantic.StrictStr#
- summary: pydantic.StrictStr#
- description: pydantic.StrictStr#
- output_span_tags: List[pydantic.StrictStr]#
- output_capsule_tags: List[pydantic.StrictStr]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainHooksListHooksInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainHooksListHooksInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityAPIKeyPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModel
Details for an API key principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- api_key_id: pydantic.StrictStr | None#
- comment: pydantic.StrictStr | None#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityAPIKeyPrincipalParams from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityAPIKeyPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityEmailPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModel
Details for an email principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- email: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityEmailPrincipalParams from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityEmailPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityHostedDomainPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModel
Additional details for a hosted domain principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- hosted_domain: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityHostedDomainPrincipalParams from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityHostedDomainPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityPrincipalDetails(*args, **kwargs)#
Bases:
pydantic.BaseModel
DomainIdentityPrincipalDetails
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | None#
- oneof_schema_2_validator: antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | None#
- oneof_schema_3_validator: antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
- actual_instance: antimatter.client.models.domain_identity_api_key_principal_params.DomainIdentityAPIKeyPrincipalParams | antimatter.client.models.domain_identity_email_principal_params.DomainIdentityEmailPrincipalParams | antimatter.client.models.domain_identity_hosted_domain_principal_params.DomainIdentityHostedDomainPrincipalParams | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderDetails(*args, **kwargs)#
Bases:
pydantic.BaseModel
DomainIdentityProviderDetails
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
- oneof_schema_2_validator: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | None#
- actual_instance: antimatter.client.models.api_key_domain_identity_provider_details.APIKeyDomainIdentityProviderDetails | antimatter.client.models.google_o_auth_domain_identity_provider_details.GoogleOAuthDomainIdentityProviderDetails | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about an identity provider. This may be an imported provider or a provider in this domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- supported_principals: List[antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType]#
- details: antimatter.client.models.domain_identity_provider_details.DomainIdentityProviderDetails | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityProviderInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of identity providers
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityProviderList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderPrincipalList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of principals in an identity provider
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principals: List[antimatter.client.models.principal_summary.PrincipalSummary]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderPrincipalList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityProviderPrincipalList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderPrincipalParams(/, **data: Any)#
Bases:
pydantic.BaseModel
Details to create a domain identity principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderPrincipalParams from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainIdentityProviderPrincipalParams from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainIdentityProviderPrincipalType#
Bases:
str
,enum.Enum
Principal type supported by an identity provider
- APIKEY = 'APIKey'#
- EMAIL = 'Email'#
- HOSTEDDOMAIN = 'HostedDomain'#
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderPrincipalType from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.DomainIdentityProviderType#
Bases:
str
,enum.Enum
Type of the identity provider.
- GOOGLEOAUTH = 'GoogleOAuth'#
- GCPSERVICEACCOUNT = 'GCPServiceAccount'#
- APIKEY = 'APIKey'#
- classmethod from_json(json_str: str) Self #
Create an instance of DomainIdentityProviderType from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.DomainInsertIdentityProviderPrincipal200Response(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainInsertIdentityProviderPrincipal200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- api_key: pydantic.StrictStr | None#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainInsertIdentityProviderPrincipal200Response from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainInsertIdentityProviderPrincipal200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainInsertWriteContextRegexRule200Response(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainInsertWriteContextRegexRule200Response
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- rule_id: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- rule_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainInsertWriteContextRegexRule200Response from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainInsertWriteContextRegexRule200Response from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPeerConfig(/, **data: Any)#
Bases:
pydantic.BaseModel
Configuration of a domain peer. If the import alias is absent, the domain ID, without the initial “dm-” prefix, will be used
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- export_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_identity_providers: pydantic.StrictBool | None#
- export_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_facts: pydantic.StrictBool | None#
- export_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_read_contexts: pydantic.StrictBool | None#
- export_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_write_contexts: pydantic.StrictBool | None#
- export_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- export_all_capabilities: pydantic.StrictBool | None#
- export_domain_policy: pydantic.StrictBool | None#
- export_capsule_access_log: pydantic.StrictBool | None#
- export_control_log: pydantic.StrictBool | None#
- export_capsule_manifest: pydantic.StrictBool | None#
- export_billing: pydantic.StrictBool | None#
- export_admin_contact: pydantic.StrictBool | None#
- nicknames: Optional[List[typing_extensions.Annotated[str, Field(strict=True, max_length=128)]]]#
- import_alias: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- forward_billing: pydantic.StrictBool | None#
- forward_admin_communications: pydantic.StrictBool | None#
- import_identity_providers: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_identity_providers: pydantic.StrictBool | None#
- import_facts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_facts: pydantic.StrictBool | None#
- import_read_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_read_contexts: pydantic.StrictBool | None#
- import_write_contexts: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_write_contexts: pydantic.StrictBool | None#
- import_capabilities: Optional[List[typing_extensions.Annotated[str, Field(strict=True)]]]#
- import_all_capabilities: pydantic.StrictBool | None#
- import_domain_policy: pydantic.StrictBool | None#
- import_precedence: pydantic.StrictInt | None#
- import_capsule_access_log: pydantic.StrictBool | None#
- import_control_log: pydantic.StrictBool | None#
- import_capsule_manifest: pydantic.StrictBool | None#
- display_name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=40)]#
- model_config#
- import_alias_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPeerConfig from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPeerConfig from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPeerList(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about the domains that this domain is peered with
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPeerList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPeerList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPeerListPeersInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainPeerListPeersInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- alias: typing_extensions.Annotated[str, Field(strict=True)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- alias_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPeerListPeersInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPeerListPeersInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPolicy(/, **data: Any)#
Bases:
pydantic.BaseModel
A domain’s policy. These rules govern who can view, edit or use which parts of a domain’s configuration. Rules are executed in order of ascending priority number, and the execution stops with the first matching rule. If no rules match, the default action is ‘deny’. If domain edit policy rules are imported from other domains in the peering configuration, the rules in those domains are independently evaluated to yield an allow/deny result and the final result from every domain, including this one, will be ANDed together. Thus, a deny in any domain yields an overall deny, and allow is only returned if all domains return allow.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPolicy from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPolicy from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPolicyRule(/, **data: Any)#
Bases:
pydantic.BaseModel
A rule governing the domain’s policy. All domain identity capabilities must match (AND) for the action to take effect. If the domainIdentity or facts sections are omitted, they match all domain identities and any fact configurations respectively. When updating or creating a rule, the id field may be omitted.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- domain_identity: antimatter.client.models.capability_rule.CapabilityRule | None#
- facts: List[antimatter.client.models.fact_policy_rules_inner.FactPolicyRulesInner] | None#
- path: pydantic.StrictStr#
- operation: pydantic.StrictStr#
- result: pydantic.StrictStr#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- disabled: pydantic.StrictBool#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- operation_validate_enum(value)#
Validates the enum
- result_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPolicyRule from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPolicyRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPrivateInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
Private information about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPrivateInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPrivateInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainPublicInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
Public information about a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- identity_providers: List[antimatter.client.models.domain_identity_provider_info.DomainIdentityProviderInfo]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainPublicInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainPublicInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainResourceSummary(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of the resources and permissions available
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- var_schema: List[antimatter.client.models.domain_resource_summary_schema_inner.DomainResourceSummarySchemaInner]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainResourceSummary from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainResourceSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainResourceSummarySchemaInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainResourceSummarySchemaInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource: pydantic.StrictStr#
- operations: List[pydantic.StrictStr]#
- placeholder_values: Dict[str, List[pydantic.StrictStr]]#
- description: pydantic.StrictStr#
- model_config#
- operations_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainResourceSummarySchemaInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainResourceSummarySchemaInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainSettings(/, **data: Any)#
Bases:
pydantic.BaseModel
Additional configuration options for a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- disaster_recovery: antimatter.client.models.domain_settings_disaster_recovery.DomainSettingsDisasterRecovery | None#
- admin_contacts: List[pydantic.StrictStr]#
- active_admin_contacts: List[pydantic.StrictStr] | None#
- pending_admin_contacts: List[pydantic.StrictStr] | None#
- default_display_name: typing_extensions.Annotated[str, Field(strict=True, max_length=40)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainSettings from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainSettings from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainSettingsDisasterRecovery(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainSettingsDisasterRecovery
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- enable: pydantic.StrictBool | None#
- public_key: pydantic.StrictStr | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainSettingsDisasterRecovery from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainSettingsDisasterRecovery from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainSettingsPatch(/, **data: Any)#
Bases:
pydantic.BaseModel
A JSON patch to apply to the domain settings
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainSettingsPatch from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainSettingsPatch from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainStatus(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about the status of the domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- notifications: List[antimatter.client.models.domain_status_notifications_inner.DomainStatusNotificationsInner] | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainStatus from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainStatus from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainStatusNotificationsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
DomainStatusNotificationsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- summary: pydantic.StrictStr#
- description: pydantic.StrictStr#
- type: pydantic.StrictStr#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainStatusNotificationsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainStatusNotificationsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.DomainTagInfoResults(/, **data: Any)#
Bases:
pydantic.BaseModel
Ordered list of the top 100 tags.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- tags: List[antimatter.client.models.tag_meta.TagMeta]#
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of DomainTagInfoResults from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of DomainTagInfoResults from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.Error(/, **data: Any)#
Bases:
pydantic.BaseModel
An internal error
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- trace_id: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of Error from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of Error from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.Fact(/, **data: Any)#
Bases:
pydantic.BaseModel
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of Fact from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of Fact from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.FactList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of facts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- facts: List[antimatter.client.models.fact.Fact]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of FactList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of FactList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.FactPolicyRulesInner(/, **data: Any)#
Bases:
pydantic.BaseModel
FactPolicyRulesInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operator: pydantic.StrictStr#
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.fact_policy_rules_inner_arguments_inner.FactPolicyRulesInnerArgumentsInner], Field(max_length=16)]#
- model_config#
- operator_validate_enum(value)#
Validates the enum
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of FactPolicyRulesInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of FactPolicyRulesInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.FactPolicyRulesInnerArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
FactPolicyRulesInnerArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- any: pydantic.StrictBool | None#
- source: pydantic.StrictStr | None#
- capability: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- capability_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of FactPolicyRulesInnerArgumentsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of FactPolicyRulesInnerArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.FactTypeDefinition(/, **data: Any)#
Bases:
pydantic.BaseModel
A type definition (schema) for a fact
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of FactTypeDefinition from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of FactTypeDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.GCPServiceAccountKeyInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
The GCP service account information and details required to use the provided GCP hosted encryption key for cryptographic operations.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- service_account_credentials: pydantic.StrictBytes | pydantic.StrictStr#
- project_id: pydantic.StrictStr#
- location: pydantic.StrictStr#
- keyring_id: pydantic.StrictStr#
- key_id: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of GCPServiceAccountKeyInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of GCPServiceAccountKeyInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.GoogleOAuthDomainIdentityProviderDetails(/, **data: Any)#
Bases:
pydantic.BaseModel
Detailed information about a Google OAuth identity provider. If the clientID is omitted, an Antimatter Client ID will be used.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- type: pydantic.StrictStr#
- client_id: pydantic.StrictStr | None#
- model_config#
- type_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of GoogleOAuthDomainIdentityProviderDetails from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of GoogleOAuthDomainIdentityProviderDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.HookInvocation(/, **data: Any)#
Bases:
pydantic.BaseModel
The name and version of a hook that has been invoked on a capsule.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: pydantic.StrictStr#
- version: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of HookInvocation from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of HookInvocation from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.InvalidRequestError(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned when one of the identifiers or arguments in the request is invalid
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- field: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of InvalidRequestError from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of InvalidRequestError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestAdd(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestAdd
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestAdd from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestAdd from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestAddValue(*args, **kwargs)#
Bases:
pydantic.BaseModel
The value to add.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestCopy(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestCopy
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestCopy from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestCopy from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestMove(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestMove
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestMove from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestMove from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestRemove(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestRemove
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestRemove from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestRemove from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestReplace(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestReplace
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestReplace from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestReplace from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestReplaceValue(*args, **kwargs)#
Bases:
pydantic.BaseModel
The value to replace.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestTst(/, **data: Any)#
Bases:
pydantic.BaseModel
JSONPatchRequestTst
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- path: pydantic.StrictStr#
- op: pydantic.StrictStr#
- model_config#
- op_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of JSONPatchRequestTst from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of JSONPatchRequestTst from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.JSONPatchRequestTstValue(*args, **kwargs)#
Bases:
pydantic.BaseModel
The value to test.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: pydantic.StrictStr | None#
- oneof_schema_2_validator: pydantic.StrictFloat | pydantic.StrictInt | None#
- oneof_schema_3_validator: pydantic.StrictBool | None#
- actual_instance: bool | float | str | None#
- one_of_schemas: List[str]#
- model_config#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.KeyInfos(/, **data: Any)#
Bases:
pydantic.BaseModel
Holds the required service account information for varying providers.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- description: pydantic.StrictStr | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of KeyInfos from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of KeyInfos from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.KeyInfosKeyInformation(*args, **kwargs)#
Bases:
pydantic.BaseModel
KeyInfosKeyInformation
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
- oneof_schema_2_validator: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | None#
- oneof_schema_3_validator: antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | None#
- actual_instance: antimatter.client.models.aws_service_account_key_info.AWSServiceAccountKeyInfo | antimatter.client.models.antimatter_delegated_aws_key_info.AntimatterDelegatedAWSKeyInfo | antimatter.client.models.gcp_service_account_key_info.GCPServiceAccountKeyInfo | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewAccessLogEntry(/, **data: Any)#
Bases:
pydantic.BaseModel
An individual capsule data-plane log entry, in the form required when inserting a new record
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operation: pydantic.StrictStr#
- location: pydantic.StrictStr | None#
- model_config#
- operation_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewAccessLogEntry from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewAccessLogEntry from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewAccessLogEntryReadInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
information available if the operation is of type “read”. allowedTags are those that were allowed without transformation during the read. redactedTags are those that were redacted during the read. tokenizedTags are those that were tokenized during the read.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- parameters: Dict[str, pydantic.StrictStr]#
- allowed_tags: antimatter.client.models.tag_summary.TagSummary#
- redacted_tags: antimatter.client.models.tag_summary.TagSummary#
- tokenized_tags: antimatter.client.models.tag_summary.TagSummary#
- returned_records: pydantic.StrictInt#
- filtered_records: pydantic.StrictInt#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewAccessLogEntryReadInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewAccessLogEntryReadInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewCapabilityDefinition(/, **data: Any)#
Bases:
pydantic.BaseModel
A capability is attached to authenticated domain identities by an identity provider, and confers additional permissions upon the identity. This is done by writing domain policy rules that reference the capability.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- unary: pydantic.StrictBool#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewCapabilityDefinition from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewCapabilityDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewDomain(/, **data: Any)#
Bases:
pydantic.BaseModel
Parameters when creating a domain
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- admin_email: typing_extensions.Annotated[str, Field(min_length=6, strict=True)]#
- display_name: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=40)]]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewDomain from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewDomain from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewDomainResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
Information returned from a successful domain create request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- api_key: pydantic.StrictStr#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewDomainResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewDomainResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewFact(/, **data: Any)#
Bases:
pydantic.BaseModel
A fact is a piece of auxiliary information that can be used as part of an authorization policy. They are usually expressed as a statement such as has_role(principal, role_name)
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- arguments: typing_extensions.Annotated[List[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]], Field(min_length=1, max_length=16)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewFact from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewFact from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewFactTypeDefinition(/, **data: Any)#
Bases:
pydantic.BaseModel
A type definition (schema) for a fact being created
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- arguments: typing_extensions.Annotated[List[antimatter.client.models.new_fact_type_definition_arguments_inner.NewFactTypeDefinitionArgumentsInner], Field(min_length=1, max_length=16)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewFactTypeDefinition from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewFactTypeDefinition from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewFactTypeDefinitionArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
NewFactTypeDefinitionArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(min_length=1, strict=True, max_length=32)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=128)]#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewFactTypeDefinitionArgumentsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewFactTypeDefinitionArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.NewReadContextConfigRule(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about what must be done to data when it is read from a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
- action: pydantic.StrictStr#
- token_scope: pydantic.StrictStr | None#
- token_format: pydantic.StrictStr | None#
- facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- model_config#
- action_validate_enum(value)#
Validates the enum
- token_scope_validate_enum(value)#
Validates the enum
- token_format_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of NewReadContextConfigRule from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of NewReadContextConfigRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.PatchRequestInner(*args, **kwargs)#
Bases:
pydantic.BaseModel
PatchRequestInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- oneof_schema_1_validator: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | None#
- oneof_schema_2_validator: antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | None#
- oneof_schema_3_validator: antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
- oneof_schema_4_validator: antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | None#
- oneof_schema_5_validator: antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | None#
- oneof_schema_6_validator: antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | None#
- actual_instance: antimatter.client.models.json_patch_request_add.JSONPatchRequestAdd | antimatter.client.models.json_patch_request_copy.JSONPatchRequestCopy | antimatter.client.models.json_patch_request_move.JSONPatchRequestMove | antimatter.client.models.json_patch_request_remove.JSONPatchRequestRemove | antimatter.client.models.json_patch_request_replace.JSONPatchRequestReplace | antimatter.client.models.json_patch_request_tst.JSONPatchRequestTst | None#
- one_of_schemas: List[str]#
- model_config#
- discriminator_value_class_map: Dict[str, str]#
- actual_instance_must_validate_oneof(v)#
- classmethod from_dict(obj: dict) Self #
- classmethod from_json(json_str: str) Self #
Returns the object represented by the json string
- to_json() str #
Returns the JSON representation of the actual instance
- to_dict() Dict #
Returns the dict representation of the actual instance
- to_str() str #
Returns the string representation of the actual instance
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.PrincipalInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
Detailed information about a principal
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- capabilities: List[antimatter.client.models.capability.Capability]#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of PrincipalInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of PrincipalInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.PrincipalSummary(/, **data: Any)#
Bases:
pydantic.BaseModel
PrincipalSummary
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- principal_id: typing_extensions.Annotated[str, Field(strict=True)]#
- principal_type: antimatter.client.models.domain_identity_provider_principal_type.DomainIdentityProviderPrincipalType#
- model_config#
- principal_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of PrincipalSummary from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of PrincipalSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextConfigRule(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about what must be done to data when it is read from a capsule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- match_expressions: List[antimatter.client.models.read_context_rule_match_expressions_inner.ReadContextRuleMatchExpressionsInner] | None#
- action: pydantic.StrictStr#
- token_scope: pydantic.StrictStr | None#
- token_format: pydantic.StrictStr | None#
- facts: List[antimatter.client.models.read_context_rule_facts_inner.ReadContextRuleFactsInner] | None#
- priority: typing_extensions.Annotated[int, Field(strict=True, ge=0)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- action_validate_enum(value)#
Validates the enum
- token_scope_validate_enum(value)#
Validates the enum
- token_format_validate_enum(value)#
Validates the enum
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextConfigRule from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextConfigRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextDetails(/, **data: Any)#
Bases:
pydantic.BaseModel
Details about a read context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.read_context_required_hook.ReadContextRequiredHook] | None#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextDetails from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of read contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- read_contexts: List[antimatter.client.models.read_context_short_details.ReadContextShortDetails]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextParameter(/, **data: Any)#
Bases:
pydantic.BaseModel
Declare parameters that can be passed in for use in read context configuration rules. It is expected that these are used for distinguishing who a read is being done on behalf of, and important attributes about that user (team, project, org etc).
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key: pydantic.StrictStr | None#
- required: pydantic.StrictBool | None#
- description: pydantic.StrictStr | None#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextParameter from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextParameter from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextRequiredHook(/, **data: Any)#
Bases:
pydantic.BaseModel
ReadContextRequiredHook
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hook: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- constraint: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- write_context: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- hook_validate_regular_expression(value)#
Validates the regular expression
- constraint_validate_regular_expression(value)#
Validates the regular expression
- write_context_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextRequiredHook from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextRequiredHook from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextRuleFactsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
ReadContextRuleFactsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- operator: pydantic.StrictStr | None#
- name: pydantic.StrictStr | None#
- arguments: List[antimatter.client.models.read_context_rule_facts_inner_arguments_inner.ReadContextRuleFactsInnerArgumentsInner] | None#
- model_config#
- operator_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextRuleFactsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextRuleFactsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextRuleFactsInnerArgumentsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
ReadContextRuleFactsInnerArgumentsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr | None#
- key: pydantic.StrictStr | None#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextRuleFactsInnerArgumentsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextRuleFactsInnerArgumentsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextRuleMatchExpressionsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
ReadContextRuleMatchExpressionsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr#
- key: pydantic.StrictStr#
- operator: pydantic.StrictStr#
- values: List[pydantic.StrictStr] | None#
- value: pydantic.StrictStr | None#
- model_config#
- source_validate_enum(value)#
Validates the enum
- operator_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextRuleMatchExpressionsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextRuleMatchExpressionsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ReadContextShortDetails(/, **data: Any)#
Bases:
pydantic.BaseModel
Abridged details about a read context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- disable_read_logging: pydantic.StrictBool | None#
- key_cache_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- read_parameters: List[antimatter.client.models.read_context_parameter.ReadContextParameter]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ReadContextShortDetails from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ReadContextShortDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ResourceExhaustedError(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned when the server is unable to process the request due to resource exhaustion or rate limiting
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ResourceExhaustedError from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ResourceExhaustedError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.ResourceNotFoundError(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned when interacting with a valid URL, but the request references an unknown resource
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- resource_type: pydantic.StrictStr#
- identifier: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of ResourceNotFoundError from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of ResourceNotFoundError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.RootEncryptionKeyIDResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
The newly created root encryption key’s ID.
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- rek_id: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of RootEncryptionKeyIDResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of RootEncryptionKeyIDResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.RootEncryptionKeyItem(/, **data: Any)#
Bases:
pydantic.BaseModel
RootEncryptionKeyItem
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- source: pydantic.StrictStr#
- var_resource_path: pydantic.StrictStr#
- rek_id: pydantic.StrictStr#
- description: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of RootEncryptionKeyItem from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of RootEncryptionKeyItem from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.RootEncryptionKeyTestResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
RootEncryptionKeyTestResponse
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: typing_extensions.Annotated[str, Field(strict=True)]#
- source: pydantic.StrictStr#
- var_resource_path: pydantic.StrictStr#
- description: pydantic.StrictStr#
- status: pydantic.StrictStr#
- status_message: pydantic.StrictStr#
- latency_ms: pydantic.StrictFloat | pydantic.StrictInt#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- status_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of RootEncryptionKeyTestResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of RootEncryptionKeyTestResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.RotateKeyEncryptionKeyResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
The results for a query of the capsule access log
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- has_more: pydantic.StrictBool#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of RotateKeyEncryptionKeyResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of RotateKeyEncryptionKeyResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.StarredDomainList(/, **data: Any)#
Bases:
pydantic.BaseModel
StarredDomainList
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domains: List[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of StarredDomainList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of StarredDomainList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.Tag(/, **data: Any)#
Bases:
pydantic.BaseModel
Tag
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- value: typing_extensions.Annotated[str, Field(strict=True, max_length=256)]#
- source: pydantic.StrictStr#
- hook_version: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- model_config#
- hook_version_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of Tag from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of Tag from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagMeta(/, **data: Any)#
Bases:
pydantic.BaseModel
TagMeta
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagMeta from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagMeta from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagSet(/, **data: Any)#
Bases:
pydantic.BaseModel
TagSet
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- capsule_tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagSet from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagSet from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagSetSpanTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
TagSetSpanTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- start: pydantic.StrictInt#
- end: pydantic.StrictInt#
- tags: List[antimatter.client.models.tag.Tag]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagSetSpanTagsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagSetSpanTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagSummary(/, **data: Any)#
Bases:
pydantic.BaseModel
TagSummary
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- unique_tags: List[antimatter.client.models.tag_summary_unique_tags_inner.TagSummaryUniqueTagsInner]#
- elided_tags: List[antimatter.client.models.tag_summary_elided_tags_inner.TagSummaryElidedTagsInner]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagSummary from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagSummary from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagSummaryElidedTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
TagSummaryElidedTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- tag_name: pydantic.StrictStr#
- num_unique_tags: pydantic.StrictInt#
- total_occurrences: pydantic.StrictInt#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagSummaryElidedTagsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagSummaryElidedTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagSummaryUniqueTagsInner(/, **data: Any)#
Bases:
pydantic.BaseModel
TagSummaryUniqueTagsInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- occurrences: pydantic.StrictInt#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of TagSummaryUniqueTagsInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of TagSummaryUniqueTagsInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.TagTypeField#
Bases:
str
,enum.Enum
the type of this tag
- STRING = 'string'#
- NUMBER = 'number'#
- BOOLEAN = 'boolean'#
- DATE = 'date'#
- UNARY = 'unary'#
- classmethod from_json(json_str: str) Self #
Create an instance of TagTypeField from a JSON string
- capitalize()#
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower case.
- casefold()#
Return a version of the string suitable for caseless comparisons.
- center()#
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
- count()#
S.count(sub[, start[, end]]) -> int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.
- encode()#
Encode the string using the codec registered for encoding.
- encoding
The encoding in which to encode the string.
- errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.
- endswith()#
S.endswith(suffix[, start[, end]]) -> bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.
- expandtabs()#
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
- find()#
S.find(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- format()#
S.format(*args, **kwargs) -> str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).
- format_map()#
S.format_map(mapping) -> str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
- index()#
S.index(sub[, start[, end]]) -> int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- isalnum()#
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.
- isalpha()#
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.
- isascii()#
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.
- isdecimal()#
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.
- isdigit()#
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there is at least one character in the string.
- isidentifier()#
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.
- islower()#
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.
- isnumeric()#
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at least one character in the string.
- isprintable()#
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in repr() or if it is empty.
- isspace()#
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.
- istitle()#
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.
- isupper()#
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.
- join()#
Concatenate any number of strings.
The string whose method is called is inserted in between each given string. The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
- ljust()#
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
- lower()#
Return a copy of the string converted to lowercase.
- lstrip()#
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
- partition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string and two empty strings.
- removeprefix()#
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.
- removesuffix()#
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.
- replace()#
Return a copy with all occurrences of substring old replaced by new.
- count
Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are replaced.
- rfind()#
S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Return -1 on failure.
- rindex()#
S.rindex(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
- rjust()#
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
- rpartition()#
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings and the original string.
- rsplit()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
- rstrip()#
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- split()#
Return a list of the substrings in the string, using sep as the separator string.
- sep
The separator used to split the string.
When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.
- maxsplit
Maximum number of splits (starting from the left). -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.
- splitlines()#
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and true.
- startswith()#
S.startswith(prefix[, start[, end]]) -> bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.
- strip()#
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
- swapcase()#
Convert uppercase characters to lowercase and lowercase characters to uppercase.
- title()#
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining cased characters have lower case.
- translate()#
Replace each character in the string using the given translation table.
- table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.
- upper()#
Return a copy of the string converted to uppercase.
- zfill()#
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
- name()#
The name of the Enum member.
- value()#
The value of the Enum member.
- class antimatter.client.UnauthorizedError(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned when the server cannot authorize the request
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- message: pydantic.StrictStr#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of UnauthorizedError from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of UnauthorizedError from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.UpsertSpanTagsRequest(/, **data: Any)#
Bases:
pydantic.BaseModel
UpsertSpanTagsRequest
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- create_token: typing_extensions.Annotated[str, Field(min_length=64, strict=True)]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of UpsertSpanTagsRequest from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of UpsertSpanTagsRequest from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.VerifyContactResponse(/, **data: Any)#
Bases:
pydantic.BaseModel
Returned by successful contact email verification
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- domain: typing_extensions.Annotated[str, Field(strict=True)]#
- email: pydantic.StrictStr#
- message: pydantic.StrictStr#
- model_config#
- domain_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of VerifyContactResponse from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of VerifyContactResponse from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextConfigInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
Information about write context config rules
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- key_reuse_ttl: Optional[typing_extensions.Annotated[int, Field(strict=True, ge=0)]]#
- required_hooks: List[antimatter.client.models.write_context_config_info_required_hooks_inner.WriteContextConfigInfoRequiredHooksInner]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextConfigInfo from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextConfigInfo from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextConfigInfoRequiredHooksInner(/, **data: Any)#
Bases:
pydantic.BaseModel
WriteContextConfigInfoRequiredHooksInner
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- hook: typing_extensions.Annotated[str, Field(strict=True)]#
- constraint: typing_extensions.Annotated[str, Field(strict=True)]#
- mode: pydantic.StrictStr#
- model_config#
- hook_validate_regular_expression(value)#
Validates the regular expression
- constraint_validate_regular_expression(value)#
Validates the regular expression
- mode_validate_enum(value)#
Validates the enum
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextConfigInfoRequiredHooksInner from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextConfigInfoRequiredHooksInner from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextDetails(/, **data: Any)#
Bases:
pydantic.BaseModel
Details about a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True)]#
- summary: typing_extensions.Annotated[str, Field(strict=True, max_length=140)]#
- description: typing_extensions.Annotated[str, Field(strict=True, max_length=4096)]#
- imported: pydantic.StrictBool#
- source_domain_id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- source_domain_name: pydantic.StrictStr | None#
- model_config#
- name_validate_regular_expression(value)#
Validates the regular expression
- source_domain_id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextDetails from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextDetails from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextList(/, **data: Any)#
Bases:
pydantic.BaseModel
A list of write contexts
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- write_contexts: List[antimatter.client.models.write_context_details.WriteContextDetails]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextList from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextList from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextRegexRule(/, **data: Any)#
Bases:
pydantic.BaseModel
Regex classifier rule for a write context
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- id: Optional[typing_extensions.Annotated[str, Field(strict=True)]]#
- pattern: pydantic.StrictStr#
- match_on_key: pydantic.StrictBool#
- capsule_tags: List[antimatter.client.models.write_context_regex_tag.WriteContextRegexTag]#
- model_config#
- id_validate_regular_expression(value)#
Validates the regular expression
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextRegexRule from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextRegexRule from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #
- class antimatter.client.WriteContextRegexTag(/, **data: Any)#
Bases:
pydantic.BaseModel
Tag descriptor for a write context regex rule
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- name: typing_extensions.Annotated[str, Field(strict=True, max_length=64)]#
- value: Optional[typing_extensions.Annotated[str, Field(strict=True, max_length=256)]]#
- model_config#
- to_str() str #
Returns the string representation of the model using alias
- to_json() str #
Returns the JSON representation of the model using alias
- classmethod from_json(json_str: str) Self #
Create an instance of WriteContextRegexTag from a JSON string
- to_dict() Dict[str, Any] #
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic’s self.model_dump(by_alias=True):
None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
- classmethod from_dict(obj: Dict) Self #
Create an instance of WriteContextRegexTag from a dict
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model #
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Args:
_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Args:
- update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: typing_extensions.Literal[json, python] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Args:
- mode: The mode in which to_python should run.
If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str #
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = GenerateJsonSchema, mode: pydantic.json_schema.JsonSchemaMode = 'validation') dict[str, Any] #
Generates a JSON schema for a model class.
- Args:
by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of
GenerateJsonSchema with your desired modifications
mode: The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], Ellipsis]) str #
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Args:
- params: Tuple of types of the class. Given a generic class
Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
- model_post_init(__context: Any) None #
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None #
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Args:
force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate a pydantic model instance.
- Args:
obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.
- Raises:
ValidationError: If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Args:
json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError: If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model #
Validate the given object contains string data against the Pydantic model.
- Args:
obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] #
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod parse_file(path: str | pathlib.Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: pydantic.deprecated.parse.Protocol | None = None, allow_pickle: bool = False) Model #
- classmethod from_orm(obj: Any) Model #
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model #
- copy(*, include: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, exclude: pydantic._internal._utils.AbstractSetIntStr | pydantic._internal._utils.MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model #
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Args:
include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- classmethod schema(by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE) Dict[str, Any] #
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any) str #
- classmethod validate(value: Any) Model #
- classmethod update_forward_refs(**localns: Any) None #