antimatter.builders#

Submodules#

Package Contents#

Classes#

CapabilityRulesBuilder

Builder class for creating a CapabilityRule.

FactPoliciesBuilder

Builder class for creating a list of FactPolicyRulesInner.

FactPolicyArgumentBuilder

Builder class for creating a FactPolicyRulesInnerArgumentsInner.

ReadContextBuilder

A builder class for constructing a ReadContext object.

ReadContextRuleBuilder

Builder class for creating a ReadContextConfigRule.

ReadContextRuleFactArgumentBuilder

Builder class for creating a ReadContextConfigRuleFactArgument.

SettingsPatchBuilder

Builder class for creating a settings patch.

WriteContextBuilder

Builder class for creating WriteContext objects.

WriteContextConfigurationBuilder

Builder class for creating WriteContextConfigInfo objects.

WriteContextRegexRuleBuilder

Builder class for creating a WriteContextRegexRule

CapabilityOperator

Enum class for defining the operator of the match expression.

Operation

Enum class for defining the operation.

Result

Enum class for defining the result.

FactArgumentSource

Enum class for defining the source of a fact policy argument.

FactOperator

Enum class for defining the operator of a fact policy.

Hook

Enum representing the available hooks.

PrincipalType

Enum class for defining the principal type.

ProviderType

Enum class for defining the type of identity provider.

Action

Enum class for defining the action of the rule.

Operator

Enum class for defining the operator of the match expression.

Source

Enum class for defining the source of the match expression.

TokenFormat

Enum class for defining the format of the token.

TokenScope

Enum class for defining the scope of the token.

PatchOperation

Enum class for defining the operation of a settings patch.

WriteContextHookMode

Class representing the mode of the WriteContextHook.

class antimatter.builders.CapabilityRulesBuilder(*rules)#

Builder class for creating a CapabilityRule.

Parameters:

rules – A list of tuples containing the name, operator, and values of the match expression.

with_rule(name: str, operator: antimatter.constants.CapabilityOperator | str | None, values: List[str] | None = None) CapabilityRulesBuilder#

Add a match expression to the rule.

Parameters:
  • name – The name of the match expression.

  • operator – The operator of the match expression.

  • values – The values of the match expression.

build() antimatter.client.CapabilityRule#

Build the rule.

Returns:

The CapabilityRule which can be used to create a new capability.

class antimatter.builders.FactPoliciesBuilder#

Builder class for creating a list of FactPolicyRulesInner.

with_policy(name: str, operator: antimatter.constants.FactOperator | str, *policies: FactPolicyArgumentBuilder) FactPoliciesBuilder#

Add a policy to the list.

Parameters:
  • name – The name of the policy.

  • operator – The operator of the policy.

  • policies – The arguments of the policy.

Returns:

The builder instance.

build() List[antimatter.client.FactPolicyRulesInner]#

Build the list of policies.

Returns:

The built list of policies.

class antimatter.builders.FactPolicyArgumentBuilder(source: str | antimatter.constants.FactArgumentSource, capability: str | None = None, any_value: bool | None = None, value: str | None = None)#

Builder class for creating a FactPolicyRulesInnerArgumentsInner.

Parameters:
  • source – The source of the argument.

  • capability – The capability of the argument.

  • any_value – Whether the argument can be any value.

  • value – The value of the argument.

build() antimatter.client.FactPolicyRulesInnerArgumentsInner#

Build the argument.

Returns:

The built argument.

class antimatter.builders.ReadContextBuilder#

A builder class for constructing a ReadContext object.

set_summary(summary: str) ReadContextBuilder#

Sets the summary of the ReadContext.

Parameters:

summary – The summary to set.

Returns:

The instance of the builder.

set_description(description: str) ReadContextBuilder#

Sets the description of the ReadContext.

Parameters:

description – The description to set.

Returns:

The instance of the builder.

add_required_hook(name: antimatter.constants.Hook | str, constraint: str = '>1.0.0', write_context: str = None) ReadContextBuilder#

Adds a required hook to the ReadContext.

Parameters:
  • name – The name of the hook.

  • constraint – The constraint of the hook.

  • write_context – The write context for the hook

Returns:

The instance of the builder.

add_read_parameter(key: str, required: bool, description: str) ReadContextBuilder#

Adds a read parameter to the ReadContext.

Parameters:
  • key – The key of the parameter.

  • required – Whether the parameter is required.

  • description – The description of the parameter.

Returns:

The instance of the builder.

set_key_cache_ttl(ttl: int) ReadContextBuilder#

Sets the recommended TTL for client-side CapsuleOpenResponses associated with this ReadContext.

Parameters:

ttl – The TTL to set.

Returns:

The instance of the builder.

set_disable_read_logging() ReadContextBuilder#

Instructs the client that read logging associated with this ReadContext can be skipped, which speeds up access to capsules.

Returns:

This instance of the builder.

build() antimatter.client.AddReadContext#

Builds the ReadContext and returns it.

Returns:

The built ReadContext.

class antimatter.builders.ReadContextRuleBuilder#

Builder class for creating a ReadContextConfigRule.

add_match_expression(source: antimatter.constants.Source | str, key: str, operator: antimatter.constants.Operator | str, values: List[str] | None = None, value: str | None = None) ReadContextRuleBuilder#

Add a match expression to the rule.

Parameters:
  • source – The source of the match expression.

  • key – The key of the match expression.

  • operator – The operator of the match expression.

  • values – The values of the match expression.

  • value – The value of the match expression.

Returns:

The builder instance.

set_action(action: antimatter.constants.Action | str) ReadContextRuleBuilder#

Set the action of the rule.

Parameters:

action – The action of the rule.

Returns:

The builder instance.

set_token_scope(token_scope: antimatter.constants.TokenScope | str) ReadContextRuleBuilder#

Set the token scope of the rule.

Parameters:

token_scope – The token scope of the rule.

Returns:

The builder instance.

set_token_format(token_format: antimatter.constants.TokenFormat | str) ReadContextRuleBuilder#

Set the token format of the rule.

Parameters:

token_format – The token format of the rule.

Returns:

The builder instance.

set_priority(priority: int) ReadContextRuleBuilder#

Set the priority of the rule.

Parameters:

priority – The priority of the rule.

Returns:

The builder instance.

add_fact(operator: antimatter.builders.fact_policy.FactOperator | str, name: str, arguments_builder: ReadContextRuleFactArgumentBuilder = None) ReadContextRuleBuilder#

Add a fact to the rule.

Parameters:
  • operator – The operator of the fact.

  • name – The name of the fact.

  • arguments_builder – The arguments builder of the fact.

Returns:

The builder instance.

build() antimatter.client.NewReadContextConfigRule#

Build the rule.

Returns:

The built rule.

class antimatter.builders.ReadContextRuleFactArgumentBuilder#

Builder class for creating a ReadContextConfigRuleFactArgument.

add_argument(source: antimatter.constants.Source | str, key: str = None, value: str = None) ReadContextRuleFactArgumentBuilder#

Add an argument to the fact.

Parameters:
  • source – The source of the argument.

  • key – The key of the argument.

  • value – The value of the argument.

Returns:

The builder instance.

build() List[antimatter.client.ReadContextRuleFactsInnerArgumentsInner]#

Build the arguments.

Returns:

The built arguments.

class antimatter.builders.SettingsPatchBuilder#

Builder class for creating a settings patch.

Parameters:
  • path – The path of the patch.

  • value – The value of the patch.

  • operation – The operation of the patch.

path: str#
value: bool | float | str#
operation: antimatter.constants.PatchOperation | str#
build() antimatter.client.PatchRequestInner#

Build the patch.

Returns:

The built patch.

class antimatter.builders.WriteContextBuilder#

Builder class for creating WriteContext objects.

set_summary(summary: str) WriteContextBuilder#

Set the summary of the WriteContext.

Parameters:

summary – The summary to set.

Returns:

The WriteContextBuilder instance.

set_description(description: str) WriteContextBuilder#

Set the description of the WriteContext.

Parameters:

description – The description to set.

Returns:

The WriteContextBuilder instance.

add_hook(name: antimatter.constants.Hook | str, constraint: str = '>1.0.0', mode: antimatter.constants.WriteContextHookMode | str = WriteContextHookMode.Sync) WriteContextBuilder#

Add a hook to the WriteContext.

Parameters:
  • name – The name of the hook.

  • constraint – The constraint of the hook.

  • mode – The mode of the hook.

Returns:

The WriteContextBuilder instance.

set_key_reuse_ttl(seconds: int) WriteContextBuilder#

Set the recommended key reuse TTL, which instructs the client to reuse encryption keys (and associated capsule IDs) for up to this duration in seconds.

Parameters:

seconds – The TTL in seconds to set.

Returns:

The WriteContextBuilder instance.

build() antimatter.client.AddWriteContext#

Build the WriteContext.

Returns:

The built WriteContext.

class antimatter.builders.WriteContextConfigurationBuilder#

Builder class for creating WriteContextConfigInfo objects.

add_hook(name: antimatter.constants.Hook | str, constraint: str = '>1.0.0', mode: antimatter.constants.WriteContextHookMode | str = WriteContextHookMode.Sync) WriteContextConfigurationBuilder#

Add a hook to the WriteContextConfigurationBuilder.

Parameters:
  • name – The name of the hook.

  • constraint – The constraint of the hook.

  • mode – The mode of the hook.

Returns:

The WriteContextConfigurationBuilder instance.

set_key_reuse_ttl(seconds: int) WriteContextConfigurationBuilder#

Set the recommended key reuse TTL, which instructs the client to reuse encryption keys (and associated capsule IDs) for up to this duration in seconds.

Parameters:

seconds – The TTL in seconds to set.

Returns:

The WriteContextConfigurationBuilder instance.

build() antimatter.client.WriteContextConfigInfo#

Build the WriteContextConfigInfo.

Returns:

The built WriteContextConfigInfo.

class antimatter.builders.WriteContextRegexRuleBuilder(pattern: str, match_on_key: bool = False)#

Builder class for creating a WriteContextRegexRule

add_span_tag(name: str, tag_type: str | antimatter.tags.TagType = TagType.Unary, value: str | None = None) WriteContextRegexRuleBuilder#

The span tag to add when the regex rule matches

Parameters:
  • name – The span tag name

  • tag_type – The span tag type; default ‘unary’

  • value – The span tag value, if the tag_type is not ‘unary’

Returns:

The builder instance

add_capsule_tag(name: str, tag_type: str | antimatter.tags.TagType = TagType.Unary, value: str | None = None) WriteContextRegexRuleBuilder#

The capsule tag to add when the regex rule matches

Parameters:
  • name – The capsule tag name

  • tag_type – The capsule tag type; default ‘unary’

  • value – The capsule tag value, if the tag_type is not ‘unary’

Returns:

The builder instance

build() antimatter.client.WriteContextRegexRule#

Build the rule.

Returns:

The built rule

class antimatter.builders.CapabilityOperator#

Bases: str, enum.Enum

Enum class for defining the operator of the match expression.

In = 'In'#
NotIn = 'NotIn'#
Exists = 'Exists'#
NotExists = 'NotExists'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Operation#

Bases: str, enum.Enum

Enum class for defining the operation.

Edit = 'edit'#
View = 'view'#
Use = 'use'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Result#

Bases: str, enum.Enum

Enum class for defining the result.

Allow = 'allow'#
Deny = 'deny'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.FactArgumentSource#

Bases: str, enum.Enum

Enum class for defining the source of a fact policy argument.

DomainIdentity = 'domainIdentity'#
Literal = 'literal'#
Any = 'any'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.FactOperator#

Bases: str, enum.Enum

Enum class for defining the operator of a fact policy.

Exists = 'Exists'#
NotExists = 'NotExists'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Hook#

Bases: str, enum.Enum

Enum representing the available hooks.

Fast = 'fast-pii'#
Accurate = 'accurate-pii'#
Regex = 'regex-classifier'#
Datastructure = 'data-structure-classifier'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.PrincipalType#

Bases: str, enum.Enum

Enum class for defining the principal type.

ApiKey = 'APIKey'#
Email = 'Email'#
HostedDomain = 'HostedDomain'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.ProviderType#

Bases: str, enum.Enum

Enum class for defining the type of identity provider.

GoogleOAuth = 'GoogleOAuth'#
ApiKey = 'APIKey'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Action#

Bases: str, enum.Enum

Enum class for defining the action of the rule.

DenyCapsule = 'DenyCapsule'#
DenyRecord = 'DenyRecord'#
Redact = 'Redact'#
Tokenize = 'Tokenize'#
Allow = 'Allow'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Operator#

Bases: str, enum.Enum

Enum class for defining the operator of the match expression.

In = 'In'#
NotIn = 'NotIn'#
Exists = 'Exists'#
NotExists = 'NotExists'#
DateDeltaLessThan = 'DateDeltaLessThan'#
DateDeltaGreaterThan = 'DateDeltaGreaterThan'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.Source#

Bases: str, enum.Enum

Enum class for defining the source of the match expression.

DomainIdentity = 'domainIdentity'#
ReadParameters = 'readParameters'#
Tags = 'tags'#
Literal = 'literal'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.TokenFormat#

Bases: str, enum.Enum

Enum class for defining the format of the token.

Explicit = 'explicit'#
Synthetic = 'synthetic'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.TokenScope#

Bases: str, enum.Enum

Enum class for defining the scope of the token.

Unique = 'unique'#
Capsule = 'capsule'#
Domain = 'domain'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.PatchOperation#

Bases: str, enum.Enum

Enum class for defining the operation of a settings patch.

Add = 'add'#
Replace = 'replace'#
Test = 'test'#
Remove = 'remove'#
Move = 'move'#
Copy = 'copy'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.

class antimatter.builders.WriteContextHookMode#

Bases: str, enum.Enum

Class representing the mode of the WriteContextHook.

Sync = 'sync'#
Async = 'async'#
capitalize()#

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()#

Return a version of the string suitable for caseless comparisons.

center()#

Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

count()#

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.

encode()#

Encode the string using the codec registered for encoding.

encoding

The encoding in which to encode the string.

errors

The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

endswith()#

S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs()#

Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find()#

S.find(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format()#

S.format(*args, **kwargs) -> str

Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’).

format_map()#

S.format_map(mapping) -> str

Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).

index()#

S.index(sub[, start[, end]]) -> int

Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()#

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string.

isalpha()#

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string.

isascii()#

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()#

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in the string.

isdigit()#

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

isidentifier()#

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

islower()#

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string.

isnumeric()#

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()#

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()#

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the string.

istitle()#

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones.

isupper()#

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string.

join()#

Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust()#

Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()#

Return a copy of the string converted to lowercase.

lstrip()#

Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

partition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

removeprefix()#

Return a str with the given prefix string removed if present.

If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string.

removesuffix()#

Return a str with the given suffix string removed if present.

If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string.

replace()#

Return a copy with all occurrences of substring old replaced by new.

count

Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind()#

S.rfind(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex()#

S.rindex(sub[, start[, end]]) -> int

Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust()#

Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition()#

Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Splitting starts at the end of the string and works to the front.

rstrip()#

Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split()#

Return a list of the substrings in the string, using sep as the separator string.

sep

The separator used to split the string.

When set to None (the default value), will split on any whitespace character (including n r t f and spaces) and will discard empty strings from the result.

maxsplit

Maximum number of splits (starting from the left). -1 (the default value) means no limit.

Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module.

splitlines()#

Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith()#

S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try.

strip()#

Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()#

Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()#

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower case.

translate()#

Replace each character in the string using the given translation table.

table

Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()#

Return a copy of the string converted to uppercase.

zfill()#

Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

name()#

The name of the Enum member.

value()#

The value of the Enum member.